8,598 research outputs found

    Generalized Second-Order Thomas-Fermi Method for Superfluid Fermi Systems

    Full text link
    Using the \hbar-expansion of the Green's function of the Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi approximation to generalized superfluid Fermi systems by including the density-dependent effective mass and the spin-orbit potential. We first implement and examine the full correction terms over different energy intervals of the quasiparticle spectra in calculations of finite nuclei. Final applications of this generalized Thomas-Fermi method are intended for various inhomogeneous superfluid Fermi systems.Comment: 8 pages, 10 figures, PR

    Controlling Excitations Inversion of a Cooper Pair Box Interacting with a Nanomechanical Resonator

    Full text link
    We investigate the action of time dependent detunings upon the excitation inversion of a Cooper pair box interacting with a nanomechanical resonator. The method employs the Jaynes-Cummings model with damping, assuming different decay rates of the Cooper pair box and various fixed and t-dependent detunings. It is shown that while the presence of damping plus constant detunings destroy the collapse/revival effects, convenient choices of time dependent detunings allow one to reconstruct such events in a perfect way. It is also shown that the mean excitation of the nanomechanical resonator is more robust against damping of the Cooper pair box for convenient values of t-dependent detunings.Comment: 11 pages, 5 figure

    Fermi-Bose Mixtures Near Broad Interspecies Feshbach Resonances

    Full text link
    In this Letter we have studied dressed bound states in Fermi-Bose mixtures near broad interspecies resonance, and implications on many-body correlations. We present the evidence for a first order phase transition between a mixture of Fermi gas and condensate, and a fully paired mixture where extended fermionic molecules occupy a single pairing channel instead of forming a molecular Fermi surface. We have further investigated the effect of Fermi surface dynamics, pair fluctuations and discussed the validity of our results.Comment: 5 pages, 4 figure

    Quantum ratchet transport with minimal dispersion rate

    Get PDF
    We analyze the performance of quantum ratchets by considering the dynamics of an initially localized wave packet loaded into a flashing periodic potential. The directed center-of-mass motion can be initiated by the uniform modulation of the potential height, provided that the modulation protocol breaks all relevant time- and spatial reflection symmetries. A poor performance of quantum ratchet transport is characterized by a slow net motion and a fast diffusive spreading of the wave packet, while the desirable optimal performance is the contrary. By invoking a quantum analog of the classical P\'eclet number, namely the quotient of the group velocity and the dispersion of the propagating wave packet, we calibrate the transport properties of flashing quantum ratchets and discuss the mechanisms that yield low-dispersive directed transport.Comment: 6 pages; 3 figures; 1 tabl

    The Apparently Decaying Orbit of WASP-12

    Get PDF
    We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: P˙=29±3\dot{P}=-29 \pm 3 ms yr1^{-1} and P/P˙=3.2P/\dot{P}= 3.2 Myr. However, it is difficult to tell whether we have observed orbital decay, or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star's tidal quality parameter QQ_\star is about 2×1052\times 10^5. If interpreted as precession, the planet's Love number is 0.44±0.100.44\pm 0.10. Orbital decay appears to be the more parsimonious model: it is favored by Δχ2=5.5\Delta\chi^2=5.5 despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final \sim0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but does require some mechanism to maintain an eccentricity of \approx0.002 in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.Comment: 10 pages [AAS journals, in press, note added in proof

    Anomalous Dimers in Quantum Mixtures near Broad Resonances: Pauli Blocking, Fermi Surface Dynamics and Implications

    Full text link
    We study the energetics and dispersion of anomalous dimers that are induced by the Pauli blocking effect in a quantum Fermi gas of majority atoms near interspecies resonances. Unlike in vacuum, we find that both the sign and magnitude of the dimer masses are tunable via Feshbach resonances. We also investigate the effects of particle-hole fluctuations on the dispersion of dimers and demonstrate that the particle-hole fluctuations near a Fermi surface (with Fermi momentum kF\hbar k_F) generally reduce the effective two-body interactions and the binding energy of dimers. Furthermore, in the limit of light minority atoms the particle-hole fluctuations disfavor the formation of dimers with a total momentum kF\hbar k_F, because near kF\hbar k_F the modes where the dominating particle-hole fluctuations appear are the softest. Our calculation suggests that near broad interspecies resonances when the minority-majority mass ratio mB/mFm_B/m_F is smaller than a critical value (estimated to be 0.136), dimers in a finite-momentum channel are energetically favored over dimers in the zero-momentum channel. We apply our theory to quantum gases of 6^{6}Li40^{40}K, 6^{6}Li87^{87}Rb, 40^{40}K87^{87}Rb and 6^{6}Li23^{23}Na near broad interspecies resonances, and discuss the limitations of our calculations and implications.Comment: 15 pages, 10 figures, published versio

    Superluminal group velocity in an anisotropic metamaterial

    Full text link
    Based on boundary condition and dispersion relation, the superluminal group velocity in an anisotropic metamaterial (AMM) is investigated. The superluminal propagation is induced by the hyperbolic dispersion relation associated with the AMM. It is shown that a modulated Gaussian beam exhibits a superluminal group velocity which depends on the choice of incident angles and optical axis angles. The superluminal propagation does not violate the theory of special relativity because the group velocity is the velocity of the peak of the localized wave packet which does not carry information. It is proposed that a triglycine sulfate (TGS) crystal can be designed and the superluminal group velocity can be measured experimentally.Comment: 9 pages, 3 figure

    Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol

    Full text link
    The participant attack is the most serious threat for quantum secret-sharing protocols. We present a method to analyze the security of quantum secret-sharing protocols against this kind of attack taking the scheme of Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an example. By distinguishing between two mixed states, we derive the necessary and sufficient conditions under which a dishonest participant can attain all the information without introducing any error, which shows that the HBB protocol is insecure against dishonest participants. It is easy to verify that the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)] is a special example of our results. To demonstrate our results further, we construct an explicit attack scheme according to the necessary and sufficient conditions. Our work completes the security analysis of the HBB protocol, and the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie

    Construction of a polarization insensitive lens from a quasi-isotropic metamaterial slab

    Full text link
    We propose to employ the quasiisotropic metamaterial (QIMM) slab to construct a polarization insensitive lens, in which both E- and H-polarized waves exhibit the same refocusing effect. For shallow incident angles, the QIMM slab will provide some degree of refocusing in the same manner as an isotropic negative index material. The refocusing effect allows us to introduce the ideas of paraxial beam focusing and phase compensation by the QIMM slab. On the basis of angular spectrum representation, a formalism describing paraxial beams propagating through a QIMM slab is presented. Because of the negative phase velocity in the QIMM slab, the inverse Gouy phase shift and the negative Rayleigh length of paraxial Gaussian beam are proposed. We find that the phase difference caused by the Gouy phase shift in vacuum can be compensated by that caused by the inverse Gouy phase shift in the QIMM slab. If certain matching conditions are satisfied, the intensity and phase distributions at object plane can be completely reconstructed at image plane. Our simulation results show that the superlensing effect with subwavelength image resolution could be achieved in the form of a QIMM slab.Comment: 25 pages, 8 figure
    corecore