5,636 research outputs found
Collisionless galaxy simulations
Three-dimensional fully self-consistent computer models were used to determine the evolution of galaxies consisting of 100 000 simulation stars. Comparison of two-dimensional simulations with three-dimensional simulations showed only a very slight stabilizing effect due to the additional degree of freedom. The addition of a fully self-consistent, nonrotating, exponential core/halo component resulted in considerable stabilization. A second series of computer experiments was performed to determine the collapse and relaxation of initially spherical, uniform density and uniform velocity dispersion stellar systems. The evolution of the system was followed for various amounts of angular momentum in solid body rotation. For initally low values of the angular momentum satisfying the Ostriker-Peebles stability criterion, the systems quickly relax to an axisymmetric shape and resemble elliptical galaxies in appearance. For larger values of the initial angular momentum bars develop and the systems undergo a much more drastic evolution
GaAs delta-doped quantum wire superlattice characterization by quantum Hall effect and Shubnikov de Haas oscillations
Quantum wire superlattices (1D) realized by controlled dislocation slipping
in quantum well superlattices (2D) (atomic saw method) have already shown
magnetophonon oscillations. This effect has been used to investigate the
electronic properties of such systems and prove the quantum character of the
physical properties of the wires. By cooling the temperature and using pulsed
magnetic field up to 35 T, we have observed both quantum Hall effect (QHE) and
Shubnikov de Haas (SdH) oscillations for various configurations of the magnetic
field. The effective masses deduced from the values of the fundamental fields
are coherent with those obtained with magnetophonon effect. The field rotation
induces a change in the resonance frequencies due to the modification of the
mass tensor as in a (3D) electron gas. In view the QHE, the plateaus observed
in rho_yz are dephased relatively to rho_zz minima which seems to be linked to
the dephasing of the minima of the density of states of the broadened Landau
levels
Collision of vortex-rings upon V-walls
A study on and 4000 vortex rings colliding with V-walls with included angles of to 120 has been conducted. Along the valley plane, higher Reynolds numbers and/or included angles of lead to secondary/tertiary vortex-ring cores leapfrogging past the primary vortex-ring cores. The boundary layers upstream of the latter separate and the secondary/tertiary vortex-ring cores pair up with these wall-separated vortices to form small daisy-chained vortex dipoles. Along the orthogonal plane, primary vortex-ring cores grow bulbous and incoherent after collisions, especially as the included angle reduces. Secondary and tertiary vortex-ring core formations along this plane also lag those along the valley plane, indicating that they form by propagating from the wall surfaces to the orthogonal plane as the primary vortex ring gradually comes into contact with the entire V-wall. Circulation results show significant variations between the valley and orthogonal plane, and reinforce the notion that the collision behaviour for is distinctively different from those at larger included angles. Vortex-core trajectories are compared to those for inclined-wall collisions, and secondary vortex-ring cores are found to initiate earlier for the V-walls, postulated to be a result of the opposing circumferential flows caused by the simultaneous collisions of both primary vortex-ring cores with the V-wall surfaces. These circumferential flows produce a bi-helical flow mode (Lim, Exp. Fluids, vol. 7, issue 7, 1989, pp. 453-463) that sees higher vortex compression levels along the orthogonal plane, which limit vortex stretching along the wall surfaces and produce secondary vortex rings earlier. Lastly, vortex structures and behaviour of the present collisions are compared to those associated with flat/inclined walls and round-cylinder-based collisions for a more systematic understanding of their differences.Ministry of Education (MOE)The authors acknowledge the support for the study by the School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore Ministry of Education AcRF Tier-2 grant (MOE2014-T2-1-002) and National Science Foundation of China grant (grant number: 11772197)
OMI/TROPOMI Data Support from GES DISC
The NASA GES DISC has been the official archive center for data from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission since 2004. In recent years, the GES DISC has been evolving and improving its data management and services in order to promote its data to be easily discovered and accessed, as well as to facilitate data "interoperability". This presentation will summarize metrics collected of OMI data usage and GES DISC data services. In order to support the recently released Sentinel-5P/TROPOMI data from ESA at the NASA GES DISC, a new End User License Agreement (EULA) has been implemented for users accessing these data from the GES DISC
Charge Localization in Disordered Colossal-Magnetoresistance Manganites
The metallic or insulating nature of the paramagnetic phase of the
colossal-magnetoresistance manganites is investigated via a double exchange
Hamiltonian with diagonal disorder. Mobility edge trajectory is determined with
the transfer matrix method. Density of states calculations indicate that random
hopping alone is not sufficient to induce Anderson localization at the Fermi
level with 20-30% doping. We argue that the metal-insulator transtion is likely
due to the formation of localized polarons from nonuniform extended states as
the effective band width is reduced by random hoppings and electron-electron
interactions.Comment: 4 pages, RevTex. 4 Figures include
Multifractal analysis of complex networks
Complex networks have recently attracted much attention in diverse areas of
science and technology. Many networks such as the WWW and biological networks
are known to display spatial heterogeneity which can be characterized by their
fractal dimensions. Multifractal analysis is a useful way to systematically
describe the spatial heterogeneity of both theoretical and experimental fractal
patterns. In this paper, we introduce a new box covering algorithm for
multifractal analysis of complex networks. This algorithm is used to calculate
the generalized fractal dimensions of some theoretical networks, namely
scale-free networks, small world networks and random networks, and one kind of
real networks, namely protein-protein interaction networks of different
species. Our numerical results indicate the existence of multifractality in
scale-free networks and protein-protein interaction networks, while the
multifractal behavior is not clear-cut for small world networks and random
networks. The possible variation of due to changes in the parameters of
the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table
Molecular-field approach to the spin-Peierls transition in CuGeO_3
We present a theory for the spin-Peierls transition in CuGeO_3. We map the
elementary excitations of the dimerized chain (solitons) on an effective Ising
model. Inter-chain coupling (or phonons) then introduce a linear binding
potential between a pair of soliton and anti-soliton, leading to a finite
transition temperature. We evaluate, as a function of temperature, the order
parameter, the singlet-triplet gap, the specific heat, and the susceptibility
and compare with experimental data on CuGeO_3. We find that CuGeO_3 is close to
a first-order phase transition. We point out, that the famous scaling law
\sim\delta^{2/3} of the triplet gap is a simple consequence of the linear
binding potential between pairs of solitons and anti-solitons in dimerized spin
chains.Comment: 7.1 pages, figures include
Active optical clock based on four-level quantum system
Active optical clock, a new conception of atomic clock, has been proposed
recently. In this report, we propose a scheme of active optical clock based on
four-level quantum system. The final accuracy and stability of two-level
quantum system are limited by second-order Doppler shift of thermal atomic
beam. To three-level quantum system, they are mainly limited by light shift of
pumping laser field. These limitations can be avoided effectively by applying
the scheme proposed here. Rubidium atom four-level quantum system, as a typical
example, is discussed in this paper. The population inversion between
and states can be built up at a time scale of s.
With the mechanism of active optical clock, in which the cavity mode linewidth
is much wider than that of the laser gain profile, it can output a laser with
quantum-limited linewidth narrower than 1 Hz in theory. An experimental
configuration is designed to realize this active optical clock.Comment: 5 page
Double Degeneracy and Jahn-Teller Effects in CMR Perovskites
Jahn-Teller (JT) electron-phonon coupling effects in the colossal
magnetoresistance perovskite compounds are investigated.
Electron-electron correlations between two degenerate Mn orbitals are
studied in the Gutzwiller approximation. The static JT distortion and
antiadiabatic polaron effects are studied in a modified Lang-Firsov
approximation. We find that (i) the electron or hole character of the charge
carrier depends on the static JT distortion, and (ii) due to the two-component
nature of the JT coupling, fluctuations in the JT distortion direction
contribute to the charge transport in similar fashion as the local spins.Comment: 11 RevTeX pages. 3 Figures available upon request. submitted to Phys.
rev. B (Rapid Communications
- …