1,452 research outputs found

    Shakedown Analysis of Framed Structures: Strong Duality and Primal-dual Analysis

    Get PDF
    AbstractThe paper is aimed to illustrate the strong duality between the lower and upper bound formulations of shakedown analysis in a novel way. By the lower or upper bound theorem, shakedown analysis is a well-known direct method to evaluate the load carrying capacity of a structure subjected to cyclic loads. In the paper, the Hölder inequality is uniquely utilized to establish the upper bound formulation from the lower bound formulation. Accordingly, the strong duality between them is revealed by duality theorems. Following that, shakedown analysis is performed by the primal-dual algorithm provided by the computing tool MATLAB. Moreover, elastic-plastic analysis is also conducted for comparisons and validations using the commercial finite-element code ABAQUS. Finally, comparisons with good agreement validate the numerical results presented in the paper

    Breaking a species barrier by enabling hybrid recombination

    Get PDF
    Hybrid sterility maintains reproductive isolation between species by preventing them from exchanging genetic material1. Anti-recombination can contribute to hybrid sterility when different species' chromosome sequences are too diverged to cross over efficiently during hybrid meiosis, resulting in chromosome mis-segregation and aneuploidy. The genome sequences of the yeasts Saccharomyces cerevisiae and Saccharomyces paradoxus have diverged by about 12% and their hybrids are sexually sterile: nearly all of their gametes are aneuploid and inviable. Previous methods to increase hybrid yeast fertility have targeted the anti-recombination machinery by enhancing meiotic crossing over. However, these methods also have counteracting detrimental effects on gamete viability due to increased mutagenesis2 and ectopic recombination3. Therefore, the role of anti-recombination has not been fully revealed, and it is often dismissed as a minor player in speciation1. By repressing two genes, SGS1 and MSH2, specifically during meiosis whilst maintaining their mitotic expression, we were able to increase hybrid fertility 70-fold, to the level of non-hybrid crosses, confirming that anti-recombination is the principal cause of hybrid sterility. Breaking this species barrier allows us to generate, for the first time, viable euploid gametes containing recombinant hybrid genomes from these two highly diverged parent species

    Influence of Magnetism on Phonons in CaFe2As2 Via Inelastic X-ray Scattering

    Full text link
    In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high temperature tetragonal phase of CaFe2As2 using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin polarized calculations imposing the antiferromagnetic order present in the low temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.Comment: 4 pages, 3 figures; added additional information and references about spin fluctuation

    Synthesis, Pore Morphology, and Dielectric Property of Mesoporous Low-k Material PSMSQ using a Reactive High-Temperature Porogen, TEPSS

    Get PDF
    A high-temperature reactive porogen, triethoxy(polystyrene)silane (TEPSS) (M w =3,500 g/mole), suitable for late-porogen removal integration scheme has been synthesized in p-xylene via atom transfer radical polymerization. TEPSS was then grafted onto poly(methyl-silsesquioxane) (MSQ) matrix (k=2.9) to circumvent possible phase separation between matrix and porogen in the hybrid approach and porogen aggregation. Our results shows porous low-k MSQ films possess uniform pore size, 24 nm for porosity up to 40%, primarily due to low PDI and reactive porogen, and the dielectric constant is decreased to 2.37 at 40% porosity. In addition, less porogen aggregation was observed at porogen loading ~40 v%

    Spin states of the first four holes in a silicon nanowire quantum dot

    Full text link
    We report measurements on a silicon nanowire quantum dot with a clarity that allows for a complete understanding of the spin states of the first four holes. First, we show control of the hole number down to one. Detailed measurements at perpendicular magnetic fields reveal the Zeeman splitting of a single hole in silicon. We are able to determine the ground-state spin configuration for one to four holes occupying the quantum dot and find a spin filling with alternating spin-down and spin-up holes, which is confirmed by magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in single-charge quantum dots in many materials systems is analyzed in detail. We observe excitations of the zero-hole ground-state energy of the quantum dot, which cannot correspond to electronic or Zeeman states. We show that the most likely explanation is acoustic phonon emission to a cavity between the two contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore