1,738 research outputs found
Recoil and momentum diffusion of an atom close to a vacuum-dielectric interface
We derive the quantum-mechanical master equation (generalized optical Bloch equation) for an atom in the vicinity of a flat dielectric surface. This equation gives access to the semiclassical radiation pressure force and the atomic momentum diffusion tensor, that are expressed in terms of the vacuum field correlation function (electromagnetic field susceptibility). It is demonstrated that the atomic center-of-mass motion provides a nonlocal probe of the electromagnetic vacuum fluctuations. We show in particular that in a circularly polarized evanescent wave, the radiation pressure force experienced by the atoms is not colinear with the evanescent wave's propagation vector. In a linearly polarized evanescent wave, the recoil per fluorescence cycle leads to a net magnetization for a Jg = 1/2 ground state atom
Two philosophies for solving non-linear equations in algebraic cryptanalysis
Algebraic Cryptanalysis [45] is concerned with solving of particular systems of multivariate non-linear equations which occur in cryptanalysis. Many different methods for solving such problems have been proposed in cryptanalytic literature: XL and XSL method, Gröbner bases, SAT solvers, as well as many other. In this paper we survey these methods and point out that the main working principle in all of them is essentially the same. One quantity grows faster than another quantity which leads to a “phase transition” and the problem becomes efficiently solvable. We illustrate this with examples from both symmetric and asymmetric cryptanalysis. In this paper we point out that there exists a second (more) general way of formulating algebraic attacks through dedicated coding techniques which involve redundancy with addition of new variables. This opens numerous new possibilities for the attackers and leads to interesting optimization problems where the existence of interesting equations may be somewhat deliberately engineered by the attacker
Brillouin propagation modes in optical lattices: Interpretation in terms of nonconventional stochastic resonance
We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance
Systematic Construction of Nonlinear Product Attacks on Block Ciphers
A major open problem in block cipher cryptanalysis is discovery of new invariant properties of complex type. Recent papers show that this can be achieved for SCREAM, Midori64, MANTIS-4, T-310 or for DES with modified S-boxes. Until now such attacks are hard to find and seem to happen by some sort of incredible coincidence. In this paper we abstract the attack from any particular block cipher. We study these attacks in terms of transformations on multivariate polynomials. We shall demonstrate how numerous variables including key variables may sometimes be eliminated and at the end two very complex Boolean polynomials will become equal. We present a general construction of an attack where multiply all the polynomials lying on one or several cycles. Then under suitable conditions the non-linear functions involved will be eliminated totally. We obtain a periodic invariant property holding for any number of rounds. A major difficulty with invariant attacks is that they typically work only for some keys. In T-310 our attack works for any key and also in spite of the presence of round constants
Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance
We theoretically study the influence of the noise strength on the excitation
of the Brillouin propagation modes in a dissipative optical lattice. We show
that the excitation has a resonant behavior for a specific amount of noise
corresponding to the precise synchronization of the Hamiltonian motion on the
optical potential surfaces and the dissipative effects associated with optical
pumping in the lattice. This corresponds to the phenomenon of stochastic
resonance. Our results are obtained by numerical simulations and correspond to
the analysis of microscopic quantities (atomic spatial distributions) as well
as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with
the simulations
‘Not one of the family’: Gender and precarious work in the neoliberal university
Gender inequality within the university is well documented but proposals to tackle it tend to focus on the higher ranks, ignoring how it manifests within precarious work. Based on data collected as part of a broader participatory action research project on casual academic labour in Irish higher education, the article focuses on the intersection of precarious work and gender in academia. We argue that precarious female academics are non-citizens of the academy, a status that is reproduced through exploitative gendered practices and evident in formal/legal recognition (staff status, rights and entitlements, pay and valuing of work) as well as in informal dimensions (social and decision-making power). We, therefore, conclude that any attempts to challenge gender inequality in academia must look downward, not upward, to the ranks of the precarious academics.</p
Optical control and entanglement of atomic Schroedinger fields
We develop a fully quantized model of a Bose-Einstein condensate driven by a
far off-resonant pump laser which interacts with a single mode of an optical
ring cavity. In the linear regime, the cavity mode exhibits spontaneous
exponential gain correlated with the appearance of two atomic field side-modes.
These side-modes and the cavity field are generated in a highly entangled
state, characterized by thermal intensity fluctuations in the individual modes,
but with two-mode correlation functions which violate certain classical
inequalities. By injecting an initial coherent field into the optical cavity
one can significantly decrease the intensity fluctuations at the expense of
reducing the correlations, thus allowing for optical control over the quantum
statistical properties of matter waves.Comment: 4 page
- …