437 research outputs found

    Statistical properties of charged interfaces

    Full text link
    We consider the equilibrium statistical properties of interfaces submitted to competing interactions; a long-range repulsive Coulomb interaction inherent to the charged interface and a short-range, anisotropic, attractive one due to either elasticity or confinement. We focus on one-dimensional interfaces such as strings. Model systems considered for applications are mainly aggregates of solitons in polyacetylene and other charge density wave systems, domain lines in uniaxial ferroelectrics and the stripe phase of oxides. At zero temperature, we find a shape instability which lead, via phase transitions, to tilted phases. Depending on the regime, elastic or confinement, the order of the zero-temperature transition changes. Thermal fluctuations lead to a pure Coulomb roughening of the string, in addition to the usual one, and to the presence of angular kinks. We suggest that such instabilities might explain the tilting of stripes in cuprate oxides. The 3D problem of the charged wall is also analyzed. The latter experiences instabilities towards various tilted phases separated by a tricritical point in the elastic regime. In the confinement regime, the increase of dimensionality favors either the melting of the wall into a Wigner crystal of its constituent charges or a strongly inclined wall which might have been observed in nickelate oxides.Comment: 17 pages, 11 figure

    Equation of state of a strongly magnetized hydrogen plasma

    Get PDF
    The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized hydrogen plasma is studied. Using the method of Green' s function various interaction contributions to the thermodynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within the framework of a low density expansion up to the order e^4 n^2 and, additionally, including ladder type contributions via the bound states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9} T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ→2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo

    Prognostic study of continuous variables (white blood cell count, peripheral blast cell count, haemoglobin level, platelet count and age) in childhood acute lymphoblastic leukaemia. Analysis of a population of 1545 children treated by the French Acute Lymphoblastic Leukaemia Group (FRALLE)

    Get PDF
    Many cutpoints have been proposed to categorize continuous variables in childhood acute lymphoblastic leukaemia (white blood cell count, peripheral blast cell count, haemoglobin level, platelet count and age), and have been used to define therapeutic subgroups. This variation in the choice of cutpoints leads to a bias called the ‘Will Rogers phenomenon’. The aim of this study was to analyse variations in the relative risk of relapse or death as a function of continuous prognostic variables in childhood ALL and to discuss the choice of cutpoints. We studied a population of 1545 children with ALL enrolled in three consecutive protocols named FRALLE 83, FRALLE 87 and FRALLE 89. We estimated the risk of relapse or death associated with different values of each continuous prognostic variable by dividing the sample into quintiles of the distribution of the variables. As regards age, a category of children under 1 year of age was distinguished and the rest of the population was divided into quintiles. The floated variance method was used to calculate the confidence interval of each relative risk, including the reference category. The relation between the quantitative prognostic factors and the risk was monotonic for each variable, except for age. For the white blood cell count (WBC), the relation is log linear. The risk associated with WBC values in the upper quintile was 1.9 times higher than that in the lower quintile. The peripheral blast cell count correlated strongly with WBC (correlation coefficient: 0.99). The risk increased with the haemoglobin level, and the risk in the upper quintile was 1.3 times higher than that in the lower quintile. The risk decreased as the platelet count increased: the risk in the lower quintile was 1.2 times higher than that in the upper quintile. The risk increased gradually with increasing age above one year. The small subgroup of patients (2.5% of the population) under 1 year of age at diagnosis had a risk 2.6 times higher than the reference category of patients between 3 and 4.3 years of age. When the risk associated with a quantitative prognostic factor varies monotonously, the selection of a cutpoint is arbitrary and represents a loss of information. Despite this loss of information, such arbitrary categorization may be necessary to define therapeutic stratification. In that case, consensus cutpoints must be defined if one wants to avoid the Will Rogers phenomenon. The cutpoints proposed by the Rome workshop and the NCI are arbitrary, but may represent an acceptable convention. © 2000 Cancer Research Campaign http://www.bjcancer.co

    Charge and Density Fluctuations Lock Horns : Ionic Criticality with Power-Law Forces

    Full text link
    How do charge and density fluctuations compete in ionic fluids near gas-liquid criticality when quantum mechanical effects play a role ? To gain some insight, long-range Ί±±L/rd+σ\Phi^{{\mathcal{L}}}_{\pm \pm} / r^{d+\sigma} interactions (with σ>0\sigma>0), that encompass van der Waals forces (when σ=d=3\sigma = d = 3), have been incorporated in exactly soluble, dd-dimensional 1:1 ionic spherical models with charges ±q0\pm q_0 and hard-core repulsions. In accord with previous work, when d>min⁥{σ,2}d>\min \{\sigma, 2\} (and q0q_0 is not too large), the Coulomb interactions do not alter the (q0=0q_0 = 0) critical universality class that is characterized by density correlations at criticality decaying as 1/rd−2+η1/r^{d-2+\eta} with η=max⁥{0,2−σ}\eta = \max \{0, 2-\sigma\}. But screening is now algebraic, the charge-charge correlations decaying, in general, only as 1/rd+σ+41/r^{d+\sigma+4}; thus σ=3\sigma = 3 faithfully mimics known \textit{non}critical d=3d=3 quantal effects. But in the \textit{absence} of full (+,−+, -) ion symmetry, density and charge fluctuations mix via a transparent mechanism: then the screening \textit{at criticality} is \textit{weaker} by a factor r4−2ηr^{4-2\eta}. Furthermore, the otherwise valid Stillinger-Lovett sum rule fails \textit{at} criticality whenever η=0\eta =0 (as, e.g., when σ>2\sigma>2) although it remains valid if η>0\eta >0 (as for σ<2\sigma<2 or in real d≀3d \leq 3 Ising-type systems).Comment: 8 pages, in press in J. Phys. A, Letters to the Edito

    Anomalous Effects of "Guest" Charges Immersed in Electrolyte: Exact 2D Results

    Full text link
    We study physical situations when one or two "guest" arbitrarily-charged particles are immersed in the bulk of a classical electrolyte modelled by a Coulomb gas of positive/negative unit point-like charges, the whole system being in thermal equilibrium. The models are treated as two-dimensional with logarithmic pairwise interactions among charged constituents; the (dimensionless) inverse temperature ÎČ\beta is considered to be smaller than 2 in order to ensure the stability of the electrolyte against the collapse of positive-negative pairs of charges. Based on recent progress in the integrable (1+1)-dimensional sine-Gordon theory, exact formulas are derived for the chemical potential of one guest charge and for the asymptotic large-distance behavior of the effective interaction between two guest charges. The exact results imply, under certain circumstances, anomalous effects such as an effective attraction (repulsion) between like-charged (oppositely-charged) guest particles and the charge inversion in the electrolyte vicinity of a highly-charged guest particle. The adequacy of the concept of renormalized charge is confirmed in the whole stability region of inverse temperatures and the related saturation phenomenon is revised.Comment: 21 pages, 1 figur

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    The statistical mechanics of the classical two-dimensional Coulomb gas is exactly solved

    Full text link
    The model under consideration is a classical 2D Coulomb gas of pointlike positive and negative unit charges, interacting via a logarithmic potential. In the whole stability range of temperatures, the equilibrium statistical mechanics of this fluid is exactly solvable via an equivalence with the integrable 2D sine-Gordon field theory. The exact solution includes the bulk thermodynamics, special cases of the surface thermodynamics, and the large-distance asymptotic behavior of the two-body correlation functions.Comment: Talk presented at the SCCS02 meeting in Santa Fe, to appear in J.Phys. A: Math. Ge

    Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: relationships with post-operative complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma concentrations of sFlt-1, the soluble form of the vascular endothelial growth factor receptor (VEGF), markedly increase during coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC). We investigated if plasma sFlt-1 values might be related to the occurrence of surgical complications after CABG.</p> <p>Methods</p> <p>Plasma samples were collected from the radial artery catheter before vascular cannulation and after opening the chest, at the end of ECC just before clamp release, after cross release, after weaning from ECC, at the 6<sup>th </sup>and 24<sup>th </sup>post-operative hour. Thirty one patients were investigated. The presence of cardiovascular, haematological and respiratory dysfunctions was prospectively assessed. Plasma sFlt-1 levels were measured with commercially ELISA kits.</p> <p>Results</p> <p>Among the 31 investigated patients, 15 had uneventful surgery. Patients with and without complications had similar pre-operative plasma sFlt-1 levels. Lowered plasma sFlt-1 levels were observed at the end of ECC in patients with haematological (p = 0.001, ANOVA) or cardiovascular (p = 0.006) impairments, but not with respiratory ones (p = 0.053), as compared to patients with uneventful surgery.</p> <p>Conclusion</p> <p>These results identify an association between specific post-CABG complication and the lower release of sFlt-1 during ECC. sFlt-1-induced VEGF neutralisation might, thus, be beneficial to reduce the development of post-operative adverse effects after CABG.</p

    Quietly sharing the load? The role of school psychologists in enabling teacher resilience

    Get PDF
    Teacher resilience is associated with positive student outcomes and plays an important role in teacher retention and well-being. School ecologies can enable the resilience of teachers, with prior research illustrating the importance of supportive colleagues, strong leadership, and positive school culture. There is limited research, however, exploring the role of school psychologists in supporting or enabling teacher resilience. Using data from experienced Australian school psychologists and teachers, this exploratory qualitative study examines the role of school psychologists in enabling teacher resilience. Findings show that school psychologists directly and indirectly support teacher resilience, although teachers perceive school psychologists’ main role as work with individual students. Issues pertaining to variations in access and particular roles of school psychologists are discussed. Although further research is needed to clarify and promote the role of school psychologists, this study points to them potentially playing an important role in school ecologies that enable teacher resilience
    • 

    corecore