21,216 research outputs found
Flow field predictions for a slab delta wing at incidence
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data
Local moment, itinerancy and deviation from Fermi liquid behavior in NaCoO for
Here we report the observation of Fermi surface (FS) pockets via the
Shubnikov de Haas effect in NaCoO for and 0.84,
respectively. Our observations indicate that the FS expected for each compound
intersects their corresponding Brillouin zones, as defined by the previously
reported superlattice structures, leading to small reconstructed FS pockets,
but only if a precise number of holes per unit cell is \emph{localized}. For
the coexistence of itinerant carriers and localized spins on a paramagnetic triangular superlattice leads at low temperatures
to the observation of a deviation from standard Fermi-liquid behavior in the
electrical transport and heat capacity properties, suggesting the formation of
some kind of quantum spin-liquid ground state.Comment: 4 pages, 4 figure
Fast beam stacking using RF barriers
Two barrier RF systems were fabricated, tested and installed in the Fermilab
Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90
kHz. When a stationary barrier is combined with a moving barrier, injected
beams from the Booster can be continuously deflected, folded and stacked in the
Main Injector, which leads to doubling of the beam intensity. This paper gives
a report on the beam experiment using this novel technology.Comment: 2007 Particle Accelerator Conference (PAC07
Magnetically-induced reconstructions of the ground state in a few-electron Si quantum dot
We report unexpected fluctuations in the positions of Coulomb blockade peaks
at high magnetic fields in a small Si quantum dot. The fluctuations have a
distinctive saw-tooth pattern: as a function of magnetic field, linear shifts
of peak positions are compensated by abrupt jumps in the opposite direction.
The linear shifts have large slopes, suggesting formation of the ground state
with a non-zero angular momentum. The value of the momentum is found to be well
defined, despite the absence of the rotational symmetry in the dot.Comment: 5 pages, 4 figures, accepted to PR
Double-dot charge transport in Si single electron/hole transistors
We studied transport through ultra-small Si quantum dot transistors
fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K,
the devices show single-electron or single-hole transport through the
lithographically defined dot. At T<4K, current through the devices is
characterized by multidot transport. From the analysis of the transport in
samples with double-dot characteristics, we conclude that extra dots are formed
inside the thermally grown gate oxide which surrounds the lithographically
defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
Neutron scattering study of novel magnetic order in Na0.5CoO2
We report polarized and unpolarized neutron scattering measurements of the
magnetic order in single crystals of Na0.5CoO2. Our data indicate that below
T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2
planes, consisting of alternating rows of ordered and non-ordered Co ions. The
domains of magnetic order are closely coupled to the domains of Na ion order,
consistent with such a two-fold symmetric spin arrangement. Magnetoresistance
and anisotropic susceptibility measurements further support this model for the
electronic ground state.Comment: 4 pages, 4 figure
- …