31,709 research outputs found
Neutrino masses and mixings
We propose a novel theoretical understanding of neutrino masses and mixings,
which is attributed to the intrinsic vector-like feature of the regularized
Standard Model at short distances. We try to explain the smallness of Dirac
neutrino masses and the decoupling of the right-handed neutrino as a free
particle. Neutrino masses and mixing angles are completely related to each
other in the Schwinger-Dyson equations for their self-energy functions. The
solutions to these equations and a possible pattern of masses and mixings are
discussed.Comment: LaTex 11 page
The (11112) model on a 1+1 dimensional lattice
We study the chiral gauge model (11112) of four left-movers and one
right-mover with strong interactions in the 1+1 dimensional lattice. Exact
computations of relevant -matrix elements demonstrate a loophole that so
constructed model and its dynamics can possibly evade the ``no-go'' theorem of
Nielsen and Ninomiya.Comment: 15 pages, 1 fig. to appear in Phys. Rev.
Correlation Between the Halo Concentration (c) and the Virial Mass (Mvir) Determined from X-ray Clusters
Numerical simulations of structure formation have suggested that there exists
a good correlation between the halo concentration c (or the characteristic
density delta_c) and the virial mass Mvir for any virialized dark halo
described by the Navarro, Frenk & White (1995) density profile. In this Letter,
we present an observational determination of the c-Mvir (or delta_c-Mvir)
relation in the mass range of 10^14< Mvir <10^16 (solar mass) using a sample of
63 X-ray luminous clusters. The best-fit power law relation, which is roughly
independent of the values of Omega_M and Lambda, is c propto Mvir^(-0.5) or
delta_c propto Mvir^(-1.2), indicating n=-0.7 for a scale-free power spectrum
of the primordial density fluctuations. We discuss the possible reasons for the
conflict with the predictions by typical CDM models such as SCDM, LCDM and
OCDM.Comment: 13 pages, 1 figure, two tables. Accepted for publication in ApJ
The noncommutative Kubo Formula: Applications to Transport in Disordered Topological Insulators with and without Magnetic Fields
The non-commutative theory of charge transport in mesoscopic aperiodic
systems under magnetic fields, developed by Bellissard, Shulz-Baldes and
collaborators in the 90's, is complemented with a practical numerical
implementation. The scheme, which is developed within a -algebraic
framework, enable efficient evaluations of the non-commutative Kubo formula,
with errors that vanish exponentially fast in the thermodynamic limit.
Applications to a model of a 2-dimensional Quantum spin-Hall insulator are
given. The conductivity tensor is mapped as function of Fermi level, disorder
strength and temperature and the phase diagram in the plane of Fermi level and
disorder strength is quantitatively derived from the transport simulations.
Simulations at finite magnetic field strength are also presented.Comment: 10 figure
A further study of the possible scaling region of lattice chiral fermions
In the possible scaling region for an SU(2) lattice chiral fermion advocated
in {\it Nucl. Phys.} B486 (1997) 282, no hard spontaneous symmetry breaking
occurs and doublers are gauge-invariantly decoupled via mixing with composite
three-fermion-states that are formed by local multifermion interactions.
However the strong coupling expansion breaks down due to no ``static limit''
for the low-energy limit (). In both neutral and charged channels, we
further analyze relevant truncated Green functions of three-fermion-operators
by the strong coupling expansion and analytical continuation of these Green
functions in the momentum space. It is shown that in the low-energy limit,
these relevant truncated Green functions of three-fermion-states with the
``wrong'' chiralities positively vanish due to the generalized form factors
(the wave-function renormalizations) of these composite three-fermion-states
vanishing as O((pa)^4) for . This strongly implies that the composite
three-fermion-states with ``wrong'' chirality are ``decoupled'' in this limit
and the low-energy spectrum is chiral, as a consequence, chiral gauge
symmetries can be exactly preserved.Comment: A few typing-errors, in particular in Eq.50, have been correcte
X-ray Flares from Markarian 501
Motivated by the recent finding of hierarchical X-ray flaring phenomenon in
Mrk 421, we conducted a systematic search for X-ray flares from Mrk 501,
another well-known TeV blazar, by making use of the rich {\em RXTE} archival
database. We detected flares over a wide range of timescales, from months down
to minutes, as in the case of Mrk 421. However, the flares do not seem to occur
nearly as frequently in Mrk 501 as in Mrk 421 on any of the timescales. The
flaring hierarchy also seems apparent in Mrk 501, suggesting that it might be
common among TeV blazars. The results seem to imply a scale-invariant physical
origin of the flares (large or small). The X-ray spectrum of the source shows a
general trend of hardening toward the peak of long-duration flares, with
indication of spectral hysteresis, which is often seen in TeV blazars. However,
the data are not of sufficient quality to allow us to draw definitive
conclusions about spectral variability associated with more rapid but weaker
flares. We critically examine a reported sub-hour X-ray flare from Mrk 501, in
light of intense background flaring activity at the time of the observation,
and concluded that the flare is likely an artifact. On the other hand, we did
identify a rapid X-ray flare that appears to be real. It lasted only for about
15 minutes, during which the flux of the source varied by about 30%.
Sub-structures are apparent in its profile, implying variabilities on even
shorter timescales. Such rapid variabilities of Mrk 501 place severe
constraints on the physical properties of the flaring region in the jet, which
have serious implications on the emission models proposed for TeV blazars.Comment: 23 pages, 11 figures, accepted for publication in Ap
Orientation and strain modulated electronic structures in puckered arsenene nanoribbons
Orthorhombic arsenene was recently predicted as an indirect bandgap
semiconductor. Here, we demonstrate that nanostructuring arsenene into
nanoribbons can successfully transform the bandgap to be direct. It is found
that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons,
which is dominated by the competition between the in-plane and out-of-plane
bondings. Moreover, straining the nanoribbons also induces a direct bandgap and
simultaneously modulates effectively the transport property. The gap energy is
largely enhanced by applying tensile strains to the armchair structures. In the
zigzag ones, a tensile strain makes the effective mass of holes much higher
while a compressive strain cause it much lower than that of electrons. Our
results are crutial to understand and engineer the electronic properties of two
dimensional materials beyond the planar ones like graphene
- …
