25,641 research outputs found

    Breaking scale invariance from a singular inflaton potential

    Full text link
    In this paper we break the scale invariance of the primordial power spectrum of curvature perturbations of inflation. Introducing a singular behaviour due to spontaneous symmetry breaking in the inflaton potential, we obtain fully analytic expressions of scale dependent oscillation and a modulation in power on small scale in the primordial spectrum. And we give the associated cosmic microwave background and matter power spectra which we can observe now and discuss the signature of the scale dependence. We also address the possibility of whether some inflationary model with featured potential might mimic the predictions of the scale invariant power spectrum. We present some examples which illustrate such degeneracies.Comment: 20 pages, 9 figures; Discussion expanded and references added; Miscellaneous typos correcte

    Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion

    Full text link
    Large transporting regular islands are found in the classical phase space of a modified kicked rotor system in which the kicking potential is reversed after every two kicks. The corresponding quantum system, for a variety of system parameters and over long time scales, is shown to display energy absorption that is significantly faster than that associated with the underlying classical anomalous diffusion. The results are of interest to both areas of quantum chaos and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review

    Control of Dynamical Localization

    Full text link
    Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field. These include the enhancement of the dynamical localization length, the introduction of classical anomalous diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of strongly nonexponential lineshapes for dynamical localization. The results provide excellent examples of controlled quantum dynamics in a system that is classically chaotic and offer new opportunities to explore quantum fluctuations and correlations in quantum chaos.Comment: 9 pages, 7 figures, to appear in Physical Review

    Adsorption, Segregation and Magnetization of a Single Mn Adatom on the GaAs (110) Surface

    Full text link
    Density functional calculations with a large unit cell have been conducted to investigate adsorption, segregation and magnetization of Mn monomer on GaAs(110). The Mn adatom is rather mobile along the trench on GaAs(110), with an energy barrier of 0.56 eV. The energy barrier for segregation across the trenches is nevertheless very high, 1.67 eV. The plots of density of states display a wide gap in the majority spin channel, but show plenty of metal-induced gap states in the minority spin channel. The Mn atoms might be invisibl in scanning tunneling microscope (STM) images taken with small biases, due to the directional p-d hybridization. For example, one will more likely see two bright spots on Mn/GaAs(110), despite the fact that there is only one Mn adatom in the system

    Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses

    Full text link
    Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.Comment: 16 pages, 10 figure

    Inflation in minimal left-right symmetric model with spontaneous D-parity breaking

    Full text link
    We present a simplest inflationary scenario in the minimal left-right symmetric model with spontaneous D-parity breaking, which is a well motivated particle physics model for neutrino masses. This leads us to connect the observed anisotropies in the cosmic microwave background to the sub-eV neutrino masses. The baryon asymmetry via the leptogenesis route is also discussed briefly.Comment: (v1) 4 pages, 1 figure; (v2) typos corrected; (v3) title and abstract changed, numerical estimates given, minor changes; (v4) 5 pages, relations between the neutrino masses and the CMB fluctuations become more explicit, miscellaneous changes, to appear in Physical Review

    Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice

    Get PDF
    The qualitative nature (i.e. integrable vs. chaotic) of the translational dynamics of a three-level atom in an optical lattice is shown to be controllable by varying the relative laser phase of two standing wave lasers. Control is explained in terms of the nonadiabatic transition between optical potentials and the corresponding regular to chaotic transition in mixed classical-quantum dynamics. The results are of interest to both areas of coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter

    Morphology of Graphene on SiC(000-1) Surfaces

    Full text link
    Graphene is formed on SiC(000-1) surfaces (the so-called C-face of the crystal) by annealing in vacuum, with the resulting films characterized by atomic force microscopy, Auger electron spectroscopy, scanning Auger microscopy and Raman spectroscopy. Morphology of these films is compared with the graphene films grown on SiC(0001) surfaces (the Si-face). Graphene forms a terraced morphology on the C-face, whereas it forms with a flatter morphology on the Si-face. It is argued that this difference occurs because of differing interface structures in the two cases. For certain SiC wafers, nanocrystalline graphite is found to form on top of the graphene.Comment: Submitted to Applied Physics Letters; 9 pages, 3 figures; corrected the stated location of Raman G line for NCG spectrum, to 1596 cm^-
    • …
    corecore