40,714 research outputs found
Physiological assessment of operator workload during manual tracking. 1: Pupillary responses
The feasibility of pupillometry as an indicator for assessing operator workload during manual tracking was studied. The mean and maximum pupillary responses of 12 subjects performing tracking tasks with three levels of difficulty (bandwidth of the forcing function were 0.15, 0.30 and 0.50 Hz respectively) were analysed. The results showed that pupillary dilation increased significantly as a function of the tracking difficulty which was reflected by the significant increase of tracking error (RMS). The present study supplies additional evidence that pupillary response is a sensitive and reliable index which may serve as an indicator for assessing operator workload in man-machine systems
Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling
We investigate the effects of the intense terahertz laser field and the
spin-orbit coupling on single electron spin in a quantum dot. The laser field
and the spin-orbit coupling can strongly affect the electron density of states
and can excite a magnetic moment.
The direction of the magnetic moment depends on the symmetries of the system,
and its amplitude can be tuned by the strength and frequency of the laser field
as well as the spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy
Computation of the p6 order chiral Lagrangian coefficients from the underlying theory of QCD
We present results of computing the p6 order low energy constants in the
normal part of chiral Lagrangian both for two and three flavor pseudo-scalar
mesons. This is a generalization of our previous work on calculating the p4
order coefficients of the chiral Lagrangian in terms of the quark self energy
Sigma(p2) approximately from QCD. We show that most of our results are
consistent with those we can find in the literature.Comment: 51 pages,2 figure
Thermodynamical quantities of lattice full QCD from an efficient method
I extend to QCD an efficient method for lattice gauge theory with dynamical
fermions. Once the eigenvalues of the Dirac operator and the density of states
of pure gluonic configurations at a set of plaquette energies (proportional to
the gauge action) are computed, thermodynamical quantities deriving from the
partition function can be obtained for arbitrary flavor number, quark masses
and wide range of coupling constants, without additional computational cost.
Results for the chiral condensate and gauge action are presented on the
lattice at flavor number , 1, 2, 3, 4 and many quark masses and coupling
constants. New results in the chiral limit for the gauge action and its
correlation with the chiral condensate, which are useful for analyzing the QCD
chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
- …