63,604 research outputs found

    Triaxiality and shape coexistence in Germanium isotopes

    Get PDF
    The ground-state deformations of the Ge isotopes are investigated in the framework of Gogny-Hartree-Fock-Bogoliubov (HFB) and Skyrme Hartree-Fock plus pairing in the BCS approximation. Five different Skyrme parametrizations are used to explore the influence of different effective masses and spin-orbit models. There is generally good agreement for binding energies and deformations (total quadrupole moment, triaxiality) with experimental data where available (i.e., in the valley of stability). All calculations agree in predicting a strong tendency for triaxial shapes in the Ge isotopes with only a few exceptions due to neutron (sub-)shell closures. The frequent occurrence of energetically very close shape isomers indicates that the underlying deformation energy landscape is very soft. The general triaxial softness of the Ge isotopes is demonstrated in the fully triaxial potential energy surface. The differences between the forces play an increasing role with increasing neutron number. This concerns particularly the influence of the spin-orbit model, which has a visible effect on the trend of binding energies towards the drip line. Different effective mass plays an important role in predicting the quadrupole and triaxial deformations. The pairing strength only weakly affects binding energies and total quadrupole deformations, but considerably influences triaxiality.Comment: 9 page

    Scaling in the vicinity of the four-state Potts fixed point

    Get PDF
    We study a self-dual generalization of the Baxter-Wu model, employing results obtained by transfer matrix calculations of the magnetic scaling dimension and the free energy. While the pure critical Baxter-Wu model displays the critical behavior of the four-state Potts fixed point in two dimensions, in the sense that logarithmic corrections are absent, the introduction of different couplings in the up- and down triangles moves the model away from this fixed point, so that logarithmic corrections appear. Real couplings move the model into the first-order range, away from the behavior displayed by the nearest-neighbor, four-state Potts model. We also use complex couplings, which bring the model in the opposite direction characterized by the same type of logarithmic corrections as present in the four-state Potts model. Our finite-size analysis confirms in detail the existing renormalization theory describing the immediate vicinity of the four-state Potts fixed point.Comment: 19 pages, 7 figure

    The Schrodinger-like Equation for a Nonrelativistic Electron in a Photon Field of Arbitrary Intensity

    Full text link
    The ordinary Schrodinger equation with minimal coupling for a nonrelativistic electron interacting with a single-mode photon field is not satisfied by the nonrelativistic limit of the exact solutions to the corresponding Dirac equation. A Schrodinger-like equation valid for arbitrary photon intensity is derived from the Dirac equation without the weak-field assumption. The "eigenvalue" in the new equation is an operator in a Cartan subalgebra. An approximation consistent with the nonrelativistic energy level derived from its relativistic value replaces the "eigenvalue" operator by an ordinary number, recovering the ordinary Schrodinger eigenvalue equation used in the formal scattering formalism. The Schrodinger-like equation for the multimode case is also presented.Comment: Tex file, 13 pages, no figur

    An unusual pi* shape resonance in the near-threshold photoionization of S(1) para-difluorobenzene

    Get PDF
    Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.Bellm, SM: Davies, JA: Whiteside, PT; Guo, J: Powis, I; and Reid KL

    Recent progress in random metric theory and its applications to conditional risk measures

    Full text link
    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally L0−L^{0}-convex topology and in particular a characterization for a locally L0−L^{0}-convex module to be L0−L^{0}-pre−-barreled. Section 7 gives some basic results on L0−L^{0}-convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable L∞−L^{\infty}-type of conditional convex risk measure and every continuous Lp−L^{p}-type of convex conditional risk measure (1≤p<+∞1\leq p<+\infty) can be extended to an LF∞(E)−L^{\infty}_{\cal F}({\cal E})-type of σϵ,λ(LF∞(E),LF1(E))−\sigma_{\epsilon,\lambda}(L^{\infty}_{\cal F}({\cal E}), L^{1}_{\cal F}({\cal E}))-lower semicontinuous conditional convex risk measure and an LFp(E)−L^{p}_{\cal F}({\cal E})-type of Tϵ,λ−{\cal T}_{\epsilon,\lambda}-continuous conditional convex risk measure (1≤p<+∞1\leq p<+\infty), respectively.Comment: 37 page

    Interplay between single particle coherence and kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the kinetic energy driven superconducting mechanism, the interplay between the single particle coherence and superconducting instability in doped cuprates is studied. The superconducting transition temperature increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime, however, the values of this superconducting transition temperature in the whole superconducting range are suppressed to low temperature due to the single particle coherence. Within this superconducting mechanism, we calculate the dynamical spin structure factor of cuprate superconductors, and reproduce all main features of inelastic neutron scattering experiments in the superconducting-state.Comment: 7 pages, 3 figures, typo correcte

    Magnetically-induced reconstructions of the ground state in a few-electron Si quantum dot

    Full text link
    We report unexpected fluctuations in the positions of Coulomb blockade peaks at high magnetic fields in a small Si quantum dot. The fluctuations have a distinctive saw-tooth pattern: as a function of magnetic field, linear shifts of peak positions are compensated by abrupt jumps in the opposite direction. The linear shifts have large slopes, suggesting formation of the ground state with a non-zero angular momentum. The value of the momentum is found to be well defined, despite the absence of the rotational symmetry in the dot.Comment: 5 pages, 4 figures, accepted to PR
    • …
    corecore