9,328 research outputs found

    Quantum Impurities and the Neutron Resonance Peak in YBa2Cu3O7{\bf YBa_2 Cu_3 O_7}: Ni versus Zn

    Full text link
    The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin dynamics of an optimally doped high temperature superconductor is compared in two samples with almost identical superconducting transition temperatures: YBa2_2(Cu0.97_{0.97}Ni0.03_{0.03})3_3O7_7 (Tc_c=80 K) and YBa2_2(Cu0.99_{0.99}Zn0.01_{0.01})3_3O7_7 (Tc_c=78 K). In the Ni-substituted system, the magnetic resonance peak (which is observed at Er_r \simeq40 meV in the pure system) shifts to lower energy with a preserved Er_r/Tc_c ratio while the shift is much smaller upon Zn substitution. By contrast Zn, but not Ni, restores significant spin fluctuations around 40 meV in the normal state. These observations are discussed in the light of models proposed for the magnetic resonance peak.Comment: 3 figures, submitted to PR

    High energy spin excitations in YBa_2 Cu_3 O_{6.5}

    Full text link
    Inelastic neutron scattering has been used to obtain a comprehensive description of the absolute dynamical spin susceptibility χ(q,ω)\chi'' (q,\omega) of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} (Tc=52KT_c = 52 K) over a wide range of energies and temperatures (2meVω120meV2 meV \leq \hbar \omega \leq 120 meV and 5KT200K5K \leq T \leq 200K). Spin excitations of two different symmetries (even and odd under exchange of two adjacent CuO_2 layers) are observed which, surprisingly, are characterized by different temperature dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure

    Magnetic Collective Mode Dispersion in High Temperature Superconductors

    Full text link
    Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.Comment: 3 pages, revtex, 4 encapsulated postscript figure

    On Measuring Condensate Fraction in Superconductors

    Full text link
    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped regime is added. Other corrections are mino

    Double dispersion of the magnetic resonant mode in cuprates

    Full text link
    The magnetic excitation spectra in the vicinity of the resonant peak, as observed by inelastic neutron scattering in cuprates, are studied within the memory-function approach. It is shown that at intermediate doping the superconducting gap induces a double dispersion of the peak, with an anisotropy rotated between the downward and upward branch. Similar behavior, but with a spin-wave dispersion at higher energies, is obtained for the low-doping case assuming a large pairing pseudogap.Comment: 4 LaTeX pages, 4 figure

    Magnetic resonance peak and nonmagnetic impurities

    Full text link
    Nonmagnetic Zn impurities are known to strongly suppress superconductivity. We review their effects on the spin excitation spectrum in YBa2Cu3O7\rm YBa_2Cu_3O_{7}, as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear in Nato Science Series: B Physic

    The scaling properties of exchange and correlation holes of the valence shell of second row atoms

    Full text link
    We study the exchange and correlation hole of the valence shell of second row atoms using variational Monte Carlo techniques, especially correlated estimates, and norm-conserving pseudopotentials. The well-known scaling of the valence shell provides a tool to probe the behavior of exchange and correlation as a functional of the density and thus test models of density functional theory. The exchange hole shows an interesting competition between two scaling forms -- one caused by self-interaction and another that is approximately invariant under particle number, related to the known invariance of exchange under uniform scaling to high density and constant particle number. The correlation hole shows a scaling trend that is marked by the finite size of the atom relative to the radius of the hole. Both trends are well captured in the main by the Perdew-Burke-Ernzerhof generalized-gradient approximation model for the exchange-correlation hole and energy.Comment: 18 pages, 8 figure
    corecore