17,492 research outputs found
Anharmonicity Induced Resonances for Ultracold Atoms and their Detection
When two atoms interact in the presence of an anharmonic potential, such as
an optical lattice, the center of mass motion cannot be separated from the
relative motion. In addition to generating a confinement-induced resonance (or
shifting the position of an existing Feshbach resonance), the external
potential changes the resonance picture qualitatively by introducing new
resonances where molecular excited center of mass states cross the scattering
threshold. We demonstrate the existence of these resonances, give their
quantitative characterization in an optical superlattice, and propose an
experimental scheme to detect them through controlled sweeping of the magnetic
field.Comment: 6 pages, 5 figures; expanded presentatio
Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"
In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van
Otterlo, and Zimanyi criticized the phenomenological time-dependent
Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for
superconducting wires. They claimed that they developed a "microscopic" model,
made qualitative improvement on my overestimate of the tunnelling barrier due
to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's
result on EM barrier is expected in my paper; ii), their work is also
phenomenological; iii), their renormalization scheme is fundamentally flawed;
iv), they underestimated the barrier for ultrathin wires; v), their comparison
with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected
from my work. They underestimated tunneling barrier for ultrathin wires by
one order of magnitude in the exponen
Effective low-dimensional Hamiltonian for strongly interacting atoms in a transverse trap
We derive an effective low-dimensional Hamiltonian for strongly interacting
ultracold atoms in a transverse trapping potential near a wide Feshbach
resonance. The Hamiltonian includes crucial information about transverse
excitations in an effective model with renormalized interaction between atoms
and composite dressed molecules. We fix all the parameters in the Hamiltonian
for both one- and two-dimensional cases.Comment: v2: 5 pages, 1 figure; expanded presentation of the formalis
A computer vision approach to classification of birds in flight from video sequences
Bird populations are an important bio-indicator; so collecting reliable data is useful for ecologists helping conserve and manage fragile ecosystems. However, existing manual monitoring methods are labour-intensive, time-consuming, and error-prone. The aim of our work is to develop a reliable system, capable of automatically classifying individual bird species in flight from videos. This is challenging, but appropriate for use in the field, since there is often a requirement to identify in flight, rather than when stationary. We present our work in progress, which uses combined appearance and motion features to classify and present experimental results across seven species using Normal Bayes classifier with majority voting and achieving a classification rate of 86%
Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap
We present a solution of the three-fermion problem in a harmonic potential
across a Feshbach resonance. We compare the spectrum with that of the two-body
problem and show that it is energetically unfavorable for the three fermions to
occupy one lattice site rather than two. We also demonstrate the existence of
an energy level crossing in the ground state with a symmetry change of its wave
function, suggesting the possibility of a phase transition for the
corresponding many-body case.Comment: 5 pages, 6 figures, typos corrected, references adde
Disclination in Lorentz Space-Time
The disclination in Lorentz space-time is studied in detail by means of
topological properties of -mapping. It is found the space-time
disclination can be described in term of a Dirac spinor. The size of the
disclination, which is proved to be the difference of two sets of su(2)% -like
monopoles expressed by two mixed spinors, is quantized topologically in terms
of topological invariantswinding number. The projection of space-time
disclination density along an antisymmetric tensor field is characterized by
Brouwer degree and Hopf index.Comment: Revtex, 7 page
- …