22 research outputs found

    Genetic Diversity of Andean Tuber Crop Species in the in situ Microcenter of Huanuco, Peru

    Full text link
    peer reviewedAndean tuber crop species oca (Oxalis tuberosa Molina), ulluco (Ullucus tuberosus Caldas), and mashua (Tropaeolum tuberosum Ruiz & Pav.) play major roles in Andean communities. These species show high variability but are threatened with genetic erosion. To study the management of genetic resources of neglected vegetatively propagated crop species, we studied genetic diversity and structure of these species in an in situ diversity microcenter (Huanuco, Peru). A sample of 15 varieties of oca, 15 of ulluco, and 26 of mashua was analyzed with the inter simple sequence repeats (ISSR) molecular markers. Mean genetic distances and global genetic diversities were high for the three species, with higher values for mashua than for oca and ulluco. Assignment technique divided both oca and ulluco samples into two genetic clusters; the mashua sample probably belongs to a single genetic cluster. Inter simple sequence repeats (ISSR) technique showed intravarietal genetic variability for most varieties, suggesting an underestimation of the in situ genetic variability. These results are discussed considering how variation in breeding systems and farmers' practice influenced patterns of genetic diversity. Our findings confirm the hypothesis of a considerable amount of variability found in neglected Andean tubers and are essential to deserve adequate conservation strategies and to maintain genetic resources of neglected Andean tuber crop species under a threat of genetic erosion

    Genetic Structure Of Quinoa (Chenopodium Quinoa Willd.) From The Bolivian Altiplano As Revealed By Rapd Markers

    Full text link
    Quinoa (Chenopodium quinoa Willd.) is a pseudocereal originated from the Andes important for small farmers’ food security as well as for commercial production. Recently, it has been claimed that in Bolivia genetic erosion could result from the marginalization of the crop in the north and from its commercial standardization in the south. The aim of this study was to quantify the hierarchical structure of the genetic variation present in eight quinoa field populations, consisting of cultivated and weedy individuals, representative of the altiplano and interandean valleys of Bolivia. Randomly amplified polymorphic DNA markers show that quinoa has a strong population structure and a high intra-population variation. An effect of geographical structure of the populations was highlighted, due to population isolation, not simply linked to distance but more probably to climatic and orographic barriers present in the studied zone. The population structure is also reinforced by the limited seed exchanges among farmers as revealed by field interviews. This population structure appears related to three major biogeographic zones: the northern and central altiplano, the interandean valley, and the southern Salar. Intrapopulation genetic diversity was higher than that expected for a mainly autogamous species, and higher than that reported in anterior studies based on germplasm collections. These results are commented in view of current knowledge on phylogeny and reproductive biology of the species, and their implications regarding genetic resources management are discussed

    Testing coexistence of extinction debt and colonization credit in fragmented calcareous grasslands with complex historical dynamics

    Full text link
    Calcareous grasslands are among the most species-rich ecosystems in temperate countries. However, these ecosystems have suffered from fragmentation and destruction during the last century. We studied the response of calcareous grassland plant diversity to landscape changes in Belgium. Results indicated that high area loss (since 1965) old habitat patches exhibited an extinction debt inverse to low area loss old habitat patches, little depending on the area loss threshold (60%, 70%, 80% or 90%) considered for the distinction between the high and low area loss patches. However, human activities also created new habitat patches in the landscape and therefore provided opportunities for calcareous grassland plant species to colonize new habitats. This also provided opportunities to study species colonization abilities in the context of habitat restoration. We analyzed species richness in new patches compared to old patches in order to detect colonization credit. We detected the presence of a colonization credit in new patches when using high loss old patches (area loss>80%, exhibiting an extinction debt) or all old patches as a reference. However, when the reference was low loss old patches alone (area loss<80%, less likely to exhibit an extinction debt), no colonization credit was detected. In addition, species composition was similar between new patches and old patches. These results are encouraging for restoration programs. However, the results indicated that the presence of an extinction debt in reference habitats could lead to inaccurate conclusions in restoration monitoring. Therefore, extinction debt should be considered when choosing reference habitats to evaluate restoration success

    Rapid Plant Invasion in Distinct Climates Involves Different Sources of Phenotypic Variation

    Get PDF
    When exotic species spread over novel environments, their phenotype will depend on a combination of different processes, including phenotypic plasticity (PP), local adaptation (LA), environmental maternal effects (EME) and genetic drift (GD). Few attempts have been made to simultaneously address the importance of those processes in plant invasion. The present study uses the well-documented invasion history of Senecio inaequidens (Asteraceae) in southern France, where it was introduced at a single wool-processing site. It gradually invaded the Mediterranean coast and the Pyrenean Mountains, which have noticeably different climates. We used seeds from Pyrenean and Mediterranean populations, as well as populations from the first introduction area, to explore the phenotypic variation related to climatic variation. A reciprocal sowing experiment was performed with gardens under Mediterranean and Pyrenean climates. We analyzed climatic phenotypic variation in germination, growth, reproduction, leaf physiology and survival. Genetic structure in the studied invasion area was characterized using AFLP. We found consistent genetic differentiation in growth traits but no home-site advantage, so weak support for LA to climate. In contrast, genetic differentiation showed a relationship with colonization history. PP in response to climate was observed for most traits, and it played an important role in leaf trait variation. EME mediated by seed mass influenced all but leaf traits in a Pyrenean climate. Heavier, earlier-germinating seeds produced larger individuals that produced more flower heads throughout the growing season. However, in the Mediterranean garden, seed mass only influenced the germination rate. The results show that phenotypic variation in response to climate depends on various ecological and evolutionary processes associated with geographical zone and life history traits. Seeing the relative importance of EME and GD, we argue that a “local adaptation vs. phenotypic plasticity” approach is therefore not sufficient to fully understand what shapes phenotypic variation and genetic architecture of invasive populations

    Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration

    Full text link
    Aims Define the chemical factors structuring plant communities of three copper-cobalt outcrops (Tenke-Fungurume, Katangan Copperbelt, D. R. Congo) presenting extreme gradients. Methods To discriminate plant communities, 172 vegetation records of all species percentage cover were classified based on NMDS and the Calinski criterion. Soil samples were analyzed for 13 chemical factors and means compared among communities with ANOVA. Partial canonical correspondence analysis (pCCA) was used to determine amount of variation explained individually by each factor and site effect. Results Seven communities were identified. Six of the studied communities were related to distinct sites. Site effect (6.0 % of global inertia) was identified as the most important factor related to plant communities’ variation followed by Cu (5.5 %), pH (3.6 %) and Co (3.5 %). Unique contribution of site effect (3.8 %) was higher than that of Cu (1.1 %) and Co (1.0 %). Conclusions In restoration, not only Cu and Co contents will be important to maintain vegetation diversity, attention should also be given to co-varying factors potentially limiting toxicity of metals: pH, organic matter, Ca and Mn. Physical parameters were also identified as important in the creation of adequate conditions for diverse communities. Further studies should focus on the effect of physical parameters and geology
    corecore