4,317 research outputs found
Sensitivity of nucleon-nucleus scattering to the off-shell behavior of on-shell equivalent NN potentials
The sensitivity of nucleon-nucleus elastic scattering to the off-shell
behavior of realistic nucleon-nucleon interactions is investigated when
on-shell equivalent nucleon-nucleon potentials are used. The study is based on
applications of the full-folding optical model potential for an explicit
treatment of the off-shell behavior of the nucleon-nucleon effective
interaction. Applications were made at beam energies between 40 and 500 MeV for
proton scattering from 40Ca and 208Pb. We use the momentum-dependent Paris
potential and its local on-shell equivalent as obtained with the
Gelfand-Levitan and Marchenko inversion formalism for the two nucleon
Schroedinger equation. Full-folding calculations for nucleon-nucleus scattering
show small fluctuations in the corresponding observables. This implies that
off-shell features of the NN interaction cannot be unambiguously identified
with these processes. Inversion potentials were also constructed directly from
NN phase-shift data (SM94) in the 0-1.3 GeV energy range. Their use in
proton-nucleus scattering above 200 MeV provide a superior description of the
observables relative to those obtained from current realistic NN potentials.
Limitations and scope of our findings are presented and discussed.Comment: 17 pages tightened REVTeX, 8 .ps figures, submitted to Phys. Rev.
Energy Dependence of the NN t-matrix in the Optical Potential for Elastic Nucleon-Nucleus Scattering
The influence of the energy dependence of the free NN t-matrix on the optical
potential of nucleon-nucleus elastic scattering is investigated within the
context of a full-folding model based on the impulse approximation. The
treatment of the pole structure of the NN t-matrix, which has to be taken into
account when integrating to negative energies is described in detail. We
calculate proton-nucleus elastic scattering observables for O,
Ca, and Pb between 65 and 200 MeV laboratory energy and study
the effect of the energy dependence of the NN t-matrix. We compare this result
with experiment and with calculations where the center-of-mass energy of the NN
t-matrix is fixed at half the projectile energy. It is found that around 200
MeV the fixed energy approximation is a very good representation of the full
calculation, however deviations occur when going to lower energies (65 MeV).Comment: 11 pages (revtex), 6 postscript figure
Discovery of > 200 RR Lyrae Variables in M62: An Oosterhoff I Globular Cluster with a Predominantly Blue HB
We report on the discovery of a large number of RR Lyrae variable stars in
the moderately metal-rich Galactic globular cluster M62 (NGC 6266), which
places it among the top three most RR Lyrae-rich globular clusters known.
Likely members of the cluster in our studied field, from our preliminary number
counts, include about 130 fundamental-mode (RRab) pulsators, with =
0.548 d, and about 75 first-overtone (RRc) pulsators, with = 0.300 d.
The average periods and the position of the RRab variables with well-defined
light curves in the Bailey diagram both suggest that the cluster is of
Oosterhoff type I. However, the morphology of the cluster's horizontal branch
(HB) is strikingly similar to that of the Oosterhoff type II globular cluster
M15 (NGC 7078), with a dominant blue HB component and a very extended blue
tail. Since M15 and M62 differ in metallicity by about one dex, we conclude
that metallicity, at a fixed HB type, is a key parameter determining the
Oosterhoff status of a globular cluster and the position of its variables in
the Bailey diagram.Comment: 5 pages, 4 figures. ApJ Letters, in pres
Full-Folding Optical Potentials for Elastic Nucleon-Nucleus Scattering based on Realistic Densities
Optical model potentials for elastic nucleon nucleus scattering are
calculated for a number of target nuclides from a full-folding integral of two
different realistic target density matrices together with full off-shell
nucleon-nucleon t-matrices derived from two different Bonn meson exchange
models. Elastic proton and neutron scattering observables calculated from these
full-folding optical potentials are compared to those obtained from `optimum
factorized' approximations in the energy regime between 65 and 400 MeV
projectile energy. The optimum factorized form is found to provide a good
approximation to elastic scattering observables obtained from the full-folding
optical potentials, although the potentials differ somewhat in the structure of
their nonlocality.Comment: 21 pages, LaTeX, 17 postscript figure
- …