1 research outputs found

    Single-Step Synthesis of FeSO<sub>4</sub>F<sub>1–<i>y</i></sub>OH<sub><i>y</i></sub> (0 ≤ <i>y</i> ≤ 1) Positive Electrodes for Li-Based Batteries

    No full text
    The recent discovery of electrochemical activity at 3.6 V vs Li<sup>+</sup>/Li<sup>0</sup> in LiFeSO<sub>4</sub>F has generated widespread research activity in this new family of fluorosulfate electrode materials aiming at either increasing the Fe<sup>3+</sup>/Fe<sup>2+</sup> redox potential, searching for new active members, or extending this family to hydroxyl-fluorosulfates. Here we present a new low temperature single step synthesis of FeSO<sub>4</sub>F<sub>1–<i>y</i></sub>OH<sub><i>y</i></sub> phases using FeF<sub>3</sub> and Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·<i>n</i>H<sub>2</sub>O as precursors. Using thorough chemical analytical techniques to test for F<sup>–</sup> content in conjunction with Mössbauer measurements, we demonstrate the existence of a limited solid solution (0.35 < y<1) within this system. Members pertaining to this solid solution have a redox activity ranging from 3.2 to 3.6 V vs Li<sup>+</sup>/Li<sup>0</sup> and show sustained reversible capacity retention of 130 mAh/g which makes them potentially interesting for Li-based polymer batteries. We demonstrate that the Li-insertion-deinsertion mechanism depends markedly on the sample F<sup>–</sup>content by using joint in situ XRD and Mössbauer spectroscopy. Moreover, we show the versatility of our synthetic approach by extending it to the elaboration of Fe<sub>1–<i>z</i></sub><i>M</i><sub><i>z</i></sub>SO<sub>4</sub>F<sub>1–<i>y</i></sub>OH<sub><i>y</i></sub> phases with <i>M</i> = Ti and V
    corecore