3,457 research outputs found

    A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method

    Get PDF
    A 20-year retrospective reanalysis of the ocean state in the Baltic Sea is constructed by assimilating available historical temperature and salinity profiles into an operational numerical model with three-dimensional variational (3DVAR) method. To determine the accuracy of the reanalysis, the authors present a series of comparisons to independent observations on a monthly mean basis. <br><br> In the reanalysis, temperature (T) and salinity (S) fit better with independent measurements than the free run at different depths. Overall, the mean biases of temperature and salinity for the 20 year period are reduced by 0.32 °C and 0.34 psu, respectively. Similarly, the mean root mean square error (RMSE) is decreased by 0.35 °C for temperature and 0.3 psu for salinity compared to the free run. The modeled sea surface temperature, which is mainly controlled by the weather forcing, shows the least improvements due to sparse in situ observations. Deep layers, on the other hand, witness significant and stable model error improvements. In particular, the salinity related to saline water intrusions into the Baltic Proper is largely improved in the reanalysis. The major inflow events such as in 1993 and 2003 are captured more accurately as the model salinity in the bottom layer is increased by 2–3 psu. Compared to independent sea level at 14 tide gauge stations, the correlation between model and observation is increased by 2%–5%, while the RMSE is generally reduced by 10 cm. It is found that the reduction of RMSE comes mainly from the reduction of mean bias. In addition, the changes in density induced by the assimilation of T/S contribute little to the barotropic transport in the shallow Danish Transition zone. <br><br> The mixed layer depth exhibits strong seasonal variations in the Baltic Sea. The basin-averaged value is about 10 m in summer and 30 m in winter. By comparison, the assimilation induces a change of 20 m to the mixed layer depth in deep waters and wintertime, whereas small changes of about 2 m occur in summer and shallow waters. It is related to the strong heating in summer and the dominant role of the surface forcing in shallow water, which largely offset the effect of the assimilation

    Modelling Heat Transfer of Carbon Nanotubes

    Full text link
    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.Comment: 10 pages, 4 figure

    Chaos in Small-World Networks

    Full text link
    A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical analysis for networks with time delay and nonlinear interaction show chaotic features in the system response when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world system may behave very differently on different scales. Time-delay parameter also has a very strong effect on properties such as the critical length and response time of small-world networks

    Toward the End of Time

    Full text link
    The null-brane space-time provides a simple model of a big crunch/big bang singularity. A non-perturbative definition of M-theory on this space-time was recently provided using matrix theory. We derive the fermion couplings for this matrix model and study the leading quantum effects. These effects include particle production and a time-dependent potential. Our results suggest that as the null-brane develops a big crunch singularity, the usual notion of space-time is replaced by an interacting gluon phase. This gluon phase appears to constitute the end of our conventional picture of space and time.Comment: 31 pages, reference adde

    Developed turbulence: From full simulations to full mode reductions

    Get PDF
    Developed Navier-Stokes turbulence is simulated with varying wavevector mode reductions. The flatness and the skewness of the velocity derivative depend on the degree of mode reduction. They show a crossover towards the value of the full numerical simulation when the viscous subrange starts to be resolved. The intermittency corrections of the scaling exponents of the pth order velocity structure functions seem to depend mainly on the proper resolution of the inertial subrange. Universal scaling properties (i.e., independent of the degree of mode reduction) are found for the relative scaling exponents rho which were recently defined by Benzi et al.Comment: 4 pages, 5 eps-figures, replaces version from August 5th, 199

    Exact solution of the one-dimensional ballistic aggregation

    Full text link
    An exact expression for the mass distribution ρ(M,t)\rho(M,t) of the ballistic aggregation model in one dimension is derived in the long time regime. It is shown that it obeys scaling ρ(M,t)=t4/3F(M/t2/3)\rho(M,t)=t^{-4/3}F(M/t^{2/3}) with a scaling function F(z)z1/2F(z)\sim z^{-1/2} for z1z\ll 1 and F(z)exp(z3/12)F(z)\sim \exp(-z^3/12) for z1z\gg 1. Relevance of these results to Burgers turbulence is discussed.Comment: 11 pages, 2 Postscript figure

    Nonperiodic oscillation of bright solitons in the condensates with a periodically oscillating harmonic potential

    Full text link
    Considering a periodically oscillating harmonic potential, we explore the dynamics properties of bright solitons in a Bose-Einstein condensate. It is found that under a slower oscillating potential, soliton movement exhibits a nonperiodic oscillation while it is hardly affected under a fast oscillating potential. Furthermore, the head-on and/or "chase" collisions of two solitons have been obtained, which can be controlled by the oscillating frequency of potential.Comment: 4 pages, 2 figure

    Stability of Quantum Critical Points in the Presence of Competing Orders

    Get PDF
    We investigate the stability of Quantum Critical Points (QCPs) in the presence of two competing phases. These phases near QCPs are assumed to be either classical or quantum and assumed to repulsively interact via square-square interactions. We find that for any dynamical exponents and for any dimensionality strong enough interaction renders QCPs unstable, and drives transitions to become first order. We propose that this instability and the onset of first-order transitions lead to spatially inhomogeneous states in practical materials near putative QCPs. Our analysis also leads us to suggest that there is a breakdown of Conformal Field Theory (CFT) scaling in the Anti de Sitter models, and in fact these models contain first-order transitions in the strong coupling limit.Comment: 28 pages, 14 figure
    corecore