690 research outputs found

    Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals: Electric field effects on exciton and multiexciton states

    Get PDF
    CdSe/CdS nanocrystal tetrapods are interesting building blocks for excitonic circuits, where the flow of excitation energy is gated by an external stimulus. The physical morphology of the nanoparticle, along with the electronic structure, which favors electron delocalization between the two semiconductors, suggests that all orientations of a particle relative to an external electric field will allow for excitons to be dissociated, stored, and released at a later time. While this approach, in principle, works, and fluorescence quenching of over 95% can be achieved electrically, we find that discrete trap states within the CdS are required to dissociate and store the exciton. These states are rapidly filled up with increasing excitation density, leading to a dramatic reduction in quenching efficiency. Charge separation is not instantaneous on the CdS excitonic antennae in which light absorption occurs, but arises from the relaxed exciton following hole localization in the core. Consequently, whereas strong electromodulation of the core exciton is observed, the core multiexciton and the CdS arm exciton are not affected by an external electric field

    Hydrophosphinylation of Styrenes Catalysed by Well‐Defined s‐Block Bimetallics

    Get PDF
    Advancing the applications of s-block heterobimetallic complexes in catalysis, we report the use of potassium magnesiate (PMDETA)2K2Mg(CH2SiMe3)4 [PMDETA=N,N,N’,N’,N’’-pentamethyldiethylenetriamine] for the catalytic hydrophosphinylation of styrenes under mild conditions. Exploiting chemical cooperation, this bimetallic approach offers greater catalytic activity and chemoselectivity than the single-metal components KCH2SiMe3 and Mg(CH2SiMe3)2. Stoichiometric studies between (PMDETA)2K2Mg(CH2SiMe3)4 and Ph2P(O)H help to elucidate the constitution of the active catalytic species, and illustrate the influence of donors on the potassium cation coordination, and how this may impact catalytic activity. Mechanistic investigations support that the rate determining step is the insertion of the olefinic substrate

    Anti-proliferative but not anti-angiogenic tyrosine kinase inhibitors enrich for cancer stem cells in soft tissue sarcoma.

    Get PDF
    BackgroundIncreasing studies implicate cancer stem cells (CSCs) as the source of resistance and relapse following conventional cytotoxic therapies. Few studies have examined the response of CSCs to targeted therapies, such as tyrosine kinase inhibitors (TKIs). We hypothesized that TKIs would have differential effects on CSC populations depending on their mechanism of action (anti-proliferative vs. anti-angiogenic).MethodsWe exposed human sarcoma cell lines to sorafenib, regorafenib, and pazopanib and assessed cell viability and expression of CSC markers (ALDH, CD24, CD44, and CD133). We evaluated survival and CSC phenotype in mice harboring sarcoma metastases after TKI therapy. We exposed dissociated primary sarcoma tumors to sorafenib, regorafenib, and pazopanib, and we used tissue microarray (TMA) and primary sarcoma samples to evaluate the frequency and intensity of CSC markers after neoadjuvant therapy with sorafenib and pazopanib. Parametric and non-parametric statistical analyses were performed as appropriate.ResultsAfter functionally validating the CSC phenotype of ALDHbright sarcoma cells, we observed that sorafenib and regorafenib were cytotoxic to sarcoma cell lines (P < 0.05), with a corresponding 1.4 - 2.8 fold increase in ALDHbright cells from baseline (P < 0.05). In contrast, we observed negligible effects on viability and CSC sub-populations with pazopanib. At low doses, there was progressive CSC enrichment in vitro after longer term exposure to sorafenib although the anti-proliferative effects were attenuated. In vivo, sorafenib improved median survival by 11 days (P < 0.05), but enriched ALDHbright cells 2.5 - 2.8 fold (P < 0.05). Analysis of primary human sarcoma samples revealed direct cytotoxicity following exposure to sorafenib and regorafenib with a corresponding increase in ALDHbright cells (P < 0.05). Again, negligible effects from pazopanib were observed. TMA analysis of archived specimens from sarcoma patients treated with sorafenib demonstrated significant enrichment for ALDHbright cells in the post-treatment resection specimen (P < 0.05), whereas clinical specimens obtained longitudinally from a patient treated with pazopanib showed no enrichment for ALDHbright cells (P > 0.05).ConclusionsAnti-proliferative TKIs appear to enrich for sarcoma CSCs while anti-angiogenic TKIs do not. The rational selection of targeted therapies for sarcoma patients may benefit from an awareness of the differential impact of TKIs on CSC populations

    Dentin dysplasia type I

    Get PDF
    This paper describes a rare case of genetically determined dentin dysplasia type I in 26-year-old male patient. The paper highlights anatomical and radiological aspects of dental abnormalities and emphasizes the significance of the education of both general practitioners and paediatricians as regards referring patients with diagnosed dentin dysplasia for a multi-specialty therapy.

    Electrically driven photon emission from individual atomic defects in monolayer WS2.

    Get PDF
    Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources

    Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals

    Get PDF
    F\"orster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as a new optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported only diffusion length of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (PNC). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites optical absorption depth, opening the possibility to design new optoelectronic device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices

    Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots

    Get PDF
    The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single optical hot spots of supercontinuum generation to track the transformation of these plasmon modes as the mesoscopic structure is tuned from a film of discrete nanoparticles to a semicontinuous layer of aggregated particles. We demonstrate how hot spot formation from diffractively-coupled nanoparticles with broad spectral resonances transitions to that from spatially delocalized surface plasmon excitations, exhibiting multiple excitation resonances as narrow as 13 meV. Photon-localization microscopy reveals that the delocalized plasmons are capable of focusing multiple narrow radiation bands over a broadband range to the same spatial region within 6 nm, underscoring the existence of novel plasmonic nanoresonators embedded in highly disordered systems

    A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Get PDF
    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≟ z ≟ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy
    • 

    corecore