1,588 research outputs found

    Constraints on Association of Single-pulse Gamma-ray Bursts and Supernovae

    Get PDF
    We explore the hypothesis, similar to one recently suggested by Bloom and colleagues, that some nearby supernovae are associated with smooth, single-pulse gamma-ray bursts, possibly having no emission above ~ 300 keV. We examine BATSE bursts with durations longer than 2 s, fitting those which can be visually characterized as single-pulse events with a lognormal pulse model. The fraction of events that can be reliably ascertained to be temporally and spectrally similar to the exemplar, GRB 980425 - possibly associated with SN 1998bw - is 4/1573 or 0.25%. This fraction could be as high as 8/1573 (0.5%) if the dimmest bursts are included. Approximately 2% of bursts are morphologically similar to GRB 980425 but have emission above ~ 300 keV. A search of supernova catalogs containing 630 detections during BATSE's lifetime reveals only one burst (GRB 980425) within a 3-month time window and within the total 3-sigma BATSE error radius that could be associated with a type Ib/c supernova. There is no tendency for any subset of single-pulse GRBs to fall near the Supergalactic Plane, whereas SNe of type Ib/c do show this tendency. Economy of hypotheses leads us to conclude that nearby supernovae generally are not related to smooth, single-pulse gamma-ray bursts.Comment: 25 pages, 5 figure

    Fireballs Loading and the Blast Wave Model of Gamma Ray Bursts

    Full text link
    A simple function for the spectral power P(Ï”,t)â‰ĄÎœL(Îœ)P(\epsilon,t) \equiv \nu L(\nu) is proposed to model, with 9 parameters, the spectral and temporal evolution of the observed nonthermal synchrotron power flux from GRBs in the blast wave model. Here Ï”=hÎœ/\epsilon = h\nu/me_ec2^2 is the observed dimensionless photon energy and tt is the observing time. Assumptions and an issue of lack of self-consistency are spelled out. The spectra are found to be most sensitive to the baryon loading, expressed in terms of the initial bulk Lorentz factor Γ0\Gamma_0, and an equipartition term qq which is assumed to be constant in time and independent of Γ0\Gamma_0. Expressions are given for the peak spectral power Pp(t)=P(Ï”p,t)P_p(t) = P(\epsilon_p,t) at the photon energy Ï”=Ï”p(t)\epsilon = \epsilon_p(t) of the spectral power peak. A general rule is that the total fireball particle kinetic energy E0∌Π0tdE_0 \sim \Pi_0 t_d, where td∝Γ0−8/3t_d \propto \Gamma_0^{-8/3} is the deceleration time scale and Π0≡P(Ï”p,td)∝Γ08/3\Pi_0 \equiv P(\epsilon_p,t_d) \propto \Gamma_0^{8/3} is the maximum measured bolometric power output in radiation, during which it is carried primarily by photons with energy E0=Ï”p(td)∝qΓ04{\cal E}_0 = \epsilon_p(t_d) \propto q\Gamma_0^4.Comment: 26 pages, including 4 figures, uses epsf.sty, rotate.sty; submitted to ApJ; revised version with extended introduction, redrawn figures, and correction

    Delayed soft X-ray emission lines in the afterglow of GRB 030227

    Full text link
    Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increases from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.Comment: Submitted to ApJL. 14 pages, 3 figures with AASLaTe

    On Spectral and Temporal Variability in Blazars and Gamma Ray Bursts

    Get PDF
    A simple model for variability in relativistic plasma outflows is studied, in which nonthermal electrons are continuously and uniformly injected in the comoving frame over a time interval dt. The evolution of the electron distribution is assumed to be dominated by synchrotron losses, and the energy- and time-dependence of the synchrotron and synchrotron self-Compton (SSC) fluxes are calculated for a power-law electron injection function with index s = 2. The mean time of a flare or pulse measured at photon energy E with respect to the onset of the injection event varies as E^{-1/2} and E^{-1/4} for synchrotron and SSC processes, respectively, until the time approaches the limiting intrinsic mean time (1+z)dt/(2 D), where z is the redshift and D is the Doppler factor. This dependence is in accord with recent analyses of blazar and GRB emissions, and suggests a method to discriminate between external Compton and SSC models of high-energy gamma radiation from blazars and GRBs. The qualititative behavior of the X-ray spectral index/flux relation observed from BL Lac objects can be explained with this model. This demonstrates that synchrotron losses are primarily responsible for the X-ray variability behavior and strengthens a new test for beaming from correlated hard X-ray/TeV observations.Comment: 10 pages, 2 figures, accepted for publication in Astrophysical Journal Letters; uses aaspp4.sty, epsf.st

    The Energy Dependence of Neutron Star Surface Modes and X-ray Burst Oscillations

    Full text link
    We calculate the photon energy dependence of the pulsed amplitude of neutron star (NS) surface modes. Simple approximations demonstrate that it depends most strongly on the bursting NS surface temperature. This result compares well with full integrations that include Doppler shifts from rotation and general relativistic corrections to photon propagation. We show that the energy dependence of type I X-ray burst oscillations agrees with that of a surface mode, lending further support to the hypothesis that they originate from surface waves. The energy dependence of the pulsed emission is rather insensitive to the NS inclination, mass and radius, or type of mode, thus hindering constraints on these parameters. We also show that, for this energy-amplitude relation, the majority of the signal (relative to the noise) comes in the 2-25 keV band, so that the current burst oscillation searches with the Rossi X-Ray Timing Explorer are close to optimal. The critical test of the mode hypothesis for X-ray burst oscillations would be a measurement of the energy dependence of burst oscillations from an accreting millisecond pulsar.Comment: Accepted for publication in The Astrophysical Journal, 6 pages, 5 figures (revised version: no changes to text, just edited author list

    BATSE Observations of Gamma-Ray Burst Tails

    Full text link
    I discuss in this paper the phenomenon of post-burst emission in BATSE gamma-ray bursts at energies traditionally associated with prompt emission. By summing the background-subtracted signals from hundreds of bursts, I find that tails out to hundreds of seconds after the trigger may be a common feature of long events (duration greater than 2s), and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component appears independent of both the duration (within the long GRB sample) and brightness of the prompt burst emission, and may be softer. Some individual bursts have visible tails at gamma-ray energies and the spectrum in at least a few cases is different from that of the prompt emission.Comment: 33 Pages from LaTex including 7 figures, with aastex. To appear in Astrophysical Journa

    Numerically Modeling the First Peak of the Type IIb SN 2016gkg

    Get PDF
    Many Type IIb supernovae (SNe) show a prominent additional early peak in their light curves, which is generally thought to be due to the shock cooling of extended hydrogen-rich material surrounding the helium core of the exploding star. The recent SN 2016gkg was a nearby Type IIb SN discovered shortly after explosion, which makes it an excellent candidate for studying this first peak. We numerically explode a large grid of extended envelope models and compare these to SN 2016gkg to investigate what constraints can be derived from its light curve. This includes exploring density profiles for both a convective envelope and an optically thick steady-state wind, the latter of which has not typically been considered for Type IIb SNe models. We find that roughly ∌0.02 M⊙\sim0.02\,M_\odot of extended material with a radius of ≈180−260 R⊙\approx180-260\,R_\odot reproduces the photometric light curve data, consistent with pre-explosion imaging. These values are independent of the assumed density profile of this material, although a convective profile provides a somewhat better fit. We infer from our modeling that the explosion must have occurred within ≈2−3 hrs\approx2-3\,{\rm hrs} of the first observed data point, demonstrating that this event was caught very close to the moment of explosion. Nevertheless, our best-fitting one-dimensional models overpredict the earliest velocity measurements, which suggests that the hydrogen-rich material is not distributed in a spherically symmetric manner. We compare this to the asymmetries seen in the SN IIb remnant Cas A, and we discuss the implications of this for Type IIb SN progenitors and explosion models.Comment: 8 pages, 8 figures, updated version accepted for publication in The Astrophysical Journa

    GRB990510: on the possibility of a beamed X-ray afterglow

    Get PDF
    We discuss the prompt emission of the gamma-ray burst (GRB) 990510 and its subsequent X-ray afterglow from 8.0 to 44.3 hrs after the prompt emission, using observations with the Gamma-ray Burst Monitor and Narrow Field Instruments on BeppoSAX. In the 40-700 keV band, GRB990510 had a fluence of \~1.9x10^{-5}erg cm^{-2}, whereas it reached a peak flux of ~2.4x10^{-6}erg cm^{-2} s^{-1}. The X-ray afterglow decay light curve can be satisfactorily described by a single power law with index of -1.42+/-0.07. Both the X-ray and optical behaviour of the afterglow can be explained by gamma-ray burst debris expanding as a jet; we find that the cooling frequency is (fixed) between the optical and X-ray wavelength bands.Comment: 16 pages, 4 figures, accepted for publication in the Astrophysical Journa

    Prompt and delayed emission properties of Gamma-Ray Bursts observed with BeppoSAX

    Get PDF
    We investigated the spectral evolution in the 2--700 keV energy band of Gamma-Ray Bursts (GRBs) detected by the Gamma-Ray Burst Monitor (GRBM) and localized with the Wide Field Cameras (WFCs) aboard the BeppoSAX satellite before May 1998. Most of them have been followed-up with the Narrow Field Instruments aboard the same satellite. In the light of these results we discuss open issues on the GRB phenomenon. We find that the optically thin synchrotron shock model (SSM) provides an acceptable representation of most of the time-resolved GRB spectra extending down to 2 keV, except in the initial phases of several bursts and during the whole duration of the quite strong GRB970111, where a low-energy photon depletion with respect to the thin SSM spectrum is observed. We find that the X-ray afterglow starts at about 50% of the GRB duration, and that its fluence, as computed from the WFC light curve, is consistent with the decay law found from the afterglow NFI observations. We also investigate the hydrodynamical evolution of the GRB in our sample and their associated afterglow, when it was detected. We find that the photon index of the latest spectrum of the GRB prompt emission is correlated with the index of the afterglow fading law, when available, as expected on the basis of an external shock of a relativistic fireball.Comment: 35 pages, 1 LaTeX file, 20 postscript figures, 1 postscript table, accepted for pubblication in Astrophysical Journal Supplement Series. Corrected error bars in Fig.2/GRB980425/panel B and GRB980425 fluence in Tab.

    Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs

    Full text link
    We study in details how the pulse width of gamma-ray bursts is related with energy under the assumption that the sources concerned are in the stage of fireballs. Due to the Doppler effect of fireballs, there exists a power law relationship between the two quantities within a limited range of frequency. The power law range and the power law index depend strongly on the observed peak energy EpE_p as well as the rest frame radiation form, and the upper and lower limits of the power law range can be determined by EpE_p. It is found that, within the same power law range, the ratio of the FWHMFWHM of the rising portion to that of the decaying phase of the pulses is also related with energy in the form of power laws. A platform-power-law-platform feature could be observed in the two relationships. In the case of an obvious softening of the rest frame spectrum, the two power law relationships also exist, but the feature would evolve to a peaked one. Predictions on the relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources belong to either the platform-power-law-platform feature class or the peaked feature group, suggesting that the effect concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an obvious softening evolution of the rest frame spectrum.Comment: Accepted for publication in The Astrophysical Journa
    • 

    corecore