30,584 research outputs found
Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity
A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy
A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements
A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration
Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses
Exit times for stochastic Ginzburg-Landau classical field theories with two
or more coupled classical fields depend on the interval length on which the
fields are defined, the potential in which the fields deterministically evolve,
and the relative stiffness of the fields themselves. The latter is of
particular importance in that physical applications will generally require
different relative stiffnesses, but the effect of varying field stiffnesses has
not heretofore been studied. In this paper, we explore the complete phase
diagram of escape times as they depend on the various problem parameters. In
addition to finding a transition in escape rates as the relative stiffness
varies, we also observe a critical slowing down of the string method algorithm
as criticality is approached.Comment: 16 pages, 10 figure
Temperature driven structural phase transition for trapped ions and its experimental detection
A Wigner crystal formed with trapped ion can undergo structural phase
transition, which is determined only by the mechanical conditions on a
classical level. Instead of this classical result, we show that through
consideration of quantum and thermal fluctuation, a structural phase transition
can be solely driven by change of the system's temperature. We determine a
finite-temperature phase diagram for trapped ions using the renormalization
group method and the path integral formalism, and propose an experimental
scheme to observe the predicted temperature-driven structural phase transition,
which is well within the reach of the current ion trap technology.Comment: 4 pages, 5 figure
Control of Dynamical Localization
Control over the quantum dynamics of chaotic kicked rotor systems is
demonstrated. Specifically, control over a number of quantum coherent phenomena
is achieved by a simple modification of the kicking field. These include the
enhancement of the dynamical localization length, the introduction of classical
anomalous diffusion assisted control for systems far from the semiclassical
regime, and the observation of a variety of strongly nonexponential lineshapes
for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer
new opportunities to explore quantum fluctuations and correlations in quantum
chaos.Comment: 9 pages, 7 figures, to appear in Physical Review
Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images
We propose a novel scheme for designing fuzzy rule based classifier. An SOFM
based method is used for generating a set of prototypes which is used to
generate a set of fuzzy rules. Each rule represents a region in the feature
space that we call the context of the rule. The rules are tuned with respect to
their context. We justified that the reasoning scheme may be different in
different context leading to context sensitive inferencing. To realize context
sensitive inferencing we used a softmin operator with a tunable parameter. The
proposed scheme is tested on several multispectral satellite image data sets
and the performance is found to be much better than the results reported in the
literature.Comment: 23 pages, 7 figure
Construction of Cross-Cultural Identity by Language Choice and Linguistic Practice: A Case-Study of Mixed Hong Kong-Mainland Identity in University Contexts
Studying relations between language and speaker’s identity is an interdisciplinary field that involves intersections among language, culture, and society. By examining the language choice and linguistic practice, especially code-mixing and code-switching, of the Mainland China students who are studying in universities of Hong Kong, we reveal a mixed Hong Kong-Mainland identity in these students: those who hold a Mainland-oriented identity tend to have a Putonghua-dominated language choice and linguistic practice, whereas those who embrace a Hong Kong-oriented identity tend to prefer a Cantonese-dominated choice and practice. This mixed identity helps better conceive the social image of Mainland immigrants in Hong Kong and discuss the cross-cultural identity formed by linguistic practice.published_or_final_versio
Improved cosmological constraints on the curvature and equation of state of dark energy
We apply the Constitution compilation of 397 supernova Ia, the baryon
acoustic oscillation measurements including the parameter, the distance
ratio and the radial data, the five-year Wilkinson microwave anisotropy probe
and the Hubble parameter data to study the geometry of the universe and the
property of dark energy by using the popular Chevallier-Polarski-Linder and
Jassal-Bagla-Padmanabhan parameterizations. We compare the simple
method of joined contour estimation and the Monte Carlo Markov chain method,
and find that it is necessary to make the marginalized analysis on the error
estimation. The probabilities of and in the
Chevallier-Polarski-Linder model are skew distributions, and the marginalized
errors are ,
, , and
. For the Jassal-Bagla-Padmanabhan model, the
marginalized errors are ,
, , and
. The equation of state parameter of dark energy
is negative in the redshift range at more than level.
The flat CDM model is consistent with the current observational data
at the level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to
match the pulished versio
- …
