19,957 research outputs found

    Null particle solutions in three-dimensional (anti-) de Sitter spaces

    Get PDF
    We obtain a class of exact solutions representing null particles moving in three-dimensional (anti-) de Sitter spaces by boosting the corresponding static point source solutions given by Deser and Jackiw. In de Sitter space the resulting solution describes two null particles moving on the (circular) cosmological horizon, while in anti-de Sitter space it describes a single null particle propagating from one side of the universe to the other. We also boost the BTZ black hole solution to the ultrarelativistic limit and obtain the solution for a spinning null particle moving in anti-de Sitter space. We find that the ultrarelativistic geometry of the black hole is exactly the same as that resulting from boosting the Deser-Jackiw solution when the angular momentum of the hole vanishes. A general class of solutions is also obtained which represents several null particles propagating in the Deser-Jackiw background. The differences between the three-dimensional and four-dimensional cases are also discussed.Comment: 11 pages, LaTeX, To appear in J. Math. Phy

    Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model

    Full text link
    We derive the effective potentials for composite operators in a Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in each case they are equivalent to the corresponding effective potentials based on an auxiliary scalar field. The both effective potentials could lead to the same possible spontaneous breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals is large enough, and can be transformed to each other when the Schwinger-Dyson (SD) equation of the dynamical fermion mass from the fermion-antifermion vacuum (or thermal) condensates is used. The results also generally indicate that two effective potentials with the same single order parameter but rather different mathematical expressions can still be considered physically equivalent if the SD equation corresponding to the extreme value conditions of the two potentials have the same form.Comment: 7 pages, no figur

    Quantum Phases of the Shastry-Sutherland Kondo Lattice: Implications for the Global Phase Diagram of Heavy Fermion Metals

    Get PDF
    Considerable recent theoretical and experimental efforts have been devoted to the study of quantum criticality and novel phases of antiferromagnetic heavy-fermion metals. In particular, quantum phase transitions have been discovered in the compound Yb2_2Pt2_2Pb. These developments have motivated us to study the competition between the RKKY and Kondo interactions on the Shastry-Sutherland lattice. We determine the zero-temperature phase diagram as a function of magnetic frustration and Kondo coupling within a slave-fermion approach. Pertinent phases include the Shastry-Sutherland valence bond solid and heavy Fermi liquid. In the presence of antiferromagnetic order, our zero-temperature phase diagram is remarkably similar to the global phase diagram proposed earlier based on general grounds. We discuss the implications of our results for the experiments on Yb2_2Pt2_2Pb and other geometrically frustrated heavy fermion compounds.Comment: 5 pages 4 figures - Supplementary Material 4 pages 6 figures. Updated with published versio

    Reaction dynamics of H + O2 at 1.6 eV collision energy

    Get PDF
    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction

    Determination of f+K(0)f_+^K(0) and Extraction of ∣Vcs∣|V_{cs}| from Semileptonic DD Decays

    Get PDF
    By globally analyzing all existing measured branching fractions and partial rates in different four momentum transfer-squared q2q^2 bins of D→Ke+νeD\to Ke^+\nu_e decays, we obtain the product of the form factor and magnitude of CKM matrix element VcsV_{cs} to be f+K(0)∣Vcs∣=0.717±0.004f_+^K(0)|V_{cs}|=0.717\pm0.004. With this product, we determine the D→KD\to K semileptonic form factor f+K(0)=0.737±0.004±0.000f_+^K(0)=0.737\pm0.004\pm0.000 in conjunction with the value of ∣Vcs∣|V_{cs}| determined from the SM global fit. Alternately, with the product together with the input of the form factor f+K(0)f_+^K(0) calculated in lattice QCD recently, we extract ∣Vcs∣D→Ke+νe=0.962±0.005±0.014|V_{cs}|^{D\to Ke^+\nu_e}=0.962\pm0.005\pm0.014, where the error is still dominated by the uncertainty of the form factor calculated in lattice QCD. Combining the ∣Vcs∣Ds+→ℓ+νℓ=1.012±0.015±0.009|V_{cs}|^{D_s^+\to\ell^+\nu_\ell}=1.012\pm0.015\pm0.009 extracted from all existing measurements of Ds+→ℓ+νℓD^+_s\to\ell^+\nu_\ell decays and ∣Vcs∣D→Ke+νe=0.962±0.005±0.014|V_{cs}|^{D\to Ke^+\nu_e}=0.962\pm0.005\pm0.014 together, we find the most precisely determined ∣Vcs∣|V_{cs}| to be ∣Vcs∣=0.983±0.011|V_{cs}|=0.983\pm0.011, which improves the accuracy of the PDG'2014 value ∣Vcs∣PDG′2014=0.986±0.016|V_{cs}|^{\rm PDG'2014}=0.986\pm0.016 by 45%45\%
    • …
    corecore