13,653 research outputs found

    Plasmonic Nano-Rotamers with Programmable Polarization-Resolved Coloration

    Get PDF
    3D-shaped artificial Mg nano-rotamers with a programmable dihedral angle between two plasmonic arms, designed to exhibit both programmable linear and circular polarization properties, are presented. The nanoscale physical shadow growth technique offers precise control over the angular alignment in these nanostructures with 1° angular precision, thus controlling their symmetry from achiral C2v and C2h to chiral C2. As a result, they give rise to a wide range of polarization-resolved coloration, spanning from invisible to visible colors with 46% transmission contrast for linear polarization while exhibiting 0.08 g-factor in visible for circular polarization. These nano-rotamers hold great potential for various applications in adaptive photonic filters, memory, and anticounterfeiting devices, benefiting from their tunable plasmonic properties

    The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5)' GUT in Z12IZ_{12-I} orbifold compactification

    Full text link
    In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8×\timesE8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below 101810^{18\,}GeV, by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank anti-symmetric tensor field BMNB_{MN}. Below the compactification scale, there results a global symmetry U(1)anom_{\rm anom} whose charge QanomQ_{\rm anom} is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)anom_{\rm anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, we calculate all the low energy parameters in terms of the vacuum expectation values of the standard model singlets.Comment: 18 pages, 4 figur

    Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst

    Get PDF
    Thin and flexible composite films of raw or purified multiwalled carbon nanotube (MWCNT) with various mass fractions and poly(methylmethacrylate) (PMMA) were synthesized for electromagnetic interference (EMI) shielding material. From scanning electron microscopy and high-resolution transmission electron microscopy photographs, we observed the formation of a conducting network through MWCNTs in an insulating PMMA matrix and the existence of an Fe catalyst in MWCNTs. The dc conductivity (sigma(dc)) of the systems increased with increasing MWCNT mass fraction, showing typical percolation behavior. The measured EMI shielding efficiency (SE) of MWCNT-PMMA composites by using the extended ASTM D4935-99 method (50 MHz-13.5 GHz) increased with increasing MWCNT mass fraction as sigma(dc). The highest EMI SE for raw MWCNT-PMMA composites was similar to27 dB, indicating commercial use for far-field EMI shielding. The contribution of absorption to total EMI SE of the systems is larger than that of reflection. Based on magnetic permeability, we suggest raw MWCNTs and their composites can be used for near-field EMI shielding.open28629

    Retaining Expression on De-identified Faces

    Get PDF
    © Springer International Publishing AG 2017The extensive use of video surveillance along with advances in face recognition has ignited concerns about the privacy of the people identifiable in the recorded documents. A face de-identification algorithm, named k-Same, has been proposed by prior research and guarantees to thwart face recognition software. However, like many previous attempts in face de-identification, kSame fails to preserve the utility such as gender and expression of the original data. To overcome this, a new algorithm is proposed here to preserve data utility as well as protect privacy. In terms of utility preservation, this new algorithm is capable of preserving not only the category of the facial expression (e.g., happy or sad) but also the intensity of the expression. This new algorithm for face de-identification possesses a great potential especially with real-world images and videos as each facial expression in real life is a continuous motion consisting of images of the same expression with various degrees of intensity.Peer reviewe

    The mu problem and sneutrino inflation

    Get PDF
    We consider sneutrino inflation and post-inflation cosmology in the singlet extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is broken by the intermediate-scale VEVs of two flaton fields, which are determined by the interplay between radiative flaton soft masses and higher order terms. Then, from the flaton VEVs, we obtain the correct mu term and the right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH sneutrino with non-minimal gravity coupling drives inflation, thanks to the same flaton coupling giving rise to the RH neutrino mass. After inflation, extra vector-like states, that are responsible for the radiative breaking of the PQ symmetry, results in thermal inflation with the flaton field, solving the gravitino problem caused by high reheating temperature. Our model predicts the spectral index to be n_s\simeq 0.96 due to the additional efoldings from thermal inflation. We show that a right dark matter abundance comes from the gravitino of 100 keV mass and a successful baryogenesis is possible via Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE

    Conclusive quantum steering with superconducting transition edge sensors

    Get PDF
    Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date all experimental tests with single photon states have relied on post-selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this "detection loophole" by combining a highly efficient source of entangled photon pairs with superconducting transition edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 standard deviations. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published in Nature Communications, see below. Also, see related experimental work by A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio
    corecore