28 research outputs found
Characterization of altered mica from Sokli, northern Finland
Vermiculite is a mineral with many potential uses in various industrial areas, such as in insulation, horticulture, and environmental applications. The regolith of the Sokli carbonatite intrusion in northern Finland consists of weathered micas which reportedly contain vermiculite. The aim of the present study was to characterize the weathered mica in order to determine if the weathered regolith contains vermiculite. If so, the value of the apatite-rich Sokli intrusion may increase, because the vermiculite could be classified as an ore in Sokli. For the characterization, mica fractions were investigated using electron probe microanalysis (EPMA), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The EPMA results show that the potassium (K2O) content of the mica investigated varies between 6.20 and 0.31 wt.%. The XRD results provided evidence thatthe interlayer distances in the mica vary between 10.1 and 14.7 Ă
. The TGA shows that the dehydration of the samples varies between 6 and 12 wt.% for temperatures up to 170°C. Dehydroxylation takes place in three steps, as is characteristic for vermiculite. The results from this study revealed that mica in the weathered parts of the Sokli carbonatite is mostly vermiculite, and that the vermiculite was formed by the weathering of phlogopite. These results can be used to determine whether vermiculite is a possible future commodity at the Sokli carbonatite complex.</p
Grit blasted aggregates of hydroxyl apatite functionalized calcium carbonate in occluding dentinal tubules
ObjectivesThis study aimed to investigate the effects of using hydroxyl apatite functionalized calcium carbonate (FCC) particles on occluding dentinal tubules.MethodsDentine specimens extracted from eighteen human molars with exposed dentinal tubules were divided into three groups (n = 6/group): a) Cut surface with smear layer; b) EDTA (smear layer removed with 17% EDTA for 1 min); and c) Grit blasted functionalized calcium carbonate (FCC) with and air pressure of 280 kPa. Microscopic dentinal tubule occlusion, tubule diameter and tubule area were evaluated using scanning electron microscopy (SEM) before and after grit blasting. Biomineralization of specimens was carried out in a simulated body fluid (SBF). Elemental analysis of occluding materials was carried out using energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) analysis was performed to demonstrate the crystal structure of the biomineralized layer on dentine.ResultsFCC particles showed penetration into the dentinal tubules by breakage of their original particle shape and size. EDTA treated surface had higher number and larger size tubules than those with smear layer or grit blasted (p ConclusionsGrit blasted FCC particles initially occluded effectively the opened dentinal tubules and biomineralization occurred in tubules primarily occluded by the FCC particles. However, in the optimal in vitro conditions in SBF, no difference between biomineralization was found between the grit blasted surface and the control surface.Clinical significanceSeveral materials and methods have been established for treatment of dentinal hypersensitivity although a golden standard treatment has not been discovered. Grit blasted functionalized calcium carbonate has a potential to occlude and remineralize exposed dentinal tubules. This could offer a more biological approach on treatment of dentin hypersensitivity.<br /
Grit blasted aggregates of hydroxyl apatite functionalized calcium carbonate in occluding dentinal tubules
Objectives: This study aimed to investigate the effects of using hydroxyl apatite functionalized calcium carbonate (FCC) particles on occluding dentinal tubules. Methods: Dentine specimens extracted from eighteen human molars with exposed dentinal tubules were divided into three groups (n = 6/group): a) Cut surface with smear layer; b) EDTA (smear layer removed with 17% EDTA for 1 min); and c) Grit blasted functionalized calcium carbonate (FCC) with and air pressure of 280 kPa. Microscopic dentinal tubule occlusion, tubule diameter and tubule area were evaluated using scanning electron microscopy (SEM) before and after grit blasting. Biomineralization of specimens was carried out in a simulated body fluid (SBF). Elemental analysis of occluding materials was carried out using energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) analysis was performed to demonstrate the crystal structure of the biomineralized layer on dentine. Results: FCC particles showed penetration into the dentinal tubules by breakage of their original particle shape and size. EDTA treated surface had higher number and larger size tubules than those with smear layer or grit blasted (p < 0.005). SEM-EDX analysis revealed mineral precipitation of calcium phosphate on the SBF immersed dentin specimens. XRD analysis showed typical crystal structure of hydroxyl apatite for the biomineralized surface layer on dentine. Conclusions: Grit blasted FCC particles initially occluded effectively the opened dentinal tubules and biomineralization occurred in tubules primarily occluded by the FCC particles. However, in the optimal in vitro conditions in SBF, no difference between biomineralization was found between the grit blasted surface and the control surface. Clinical significance: Several materials and methods have been established for treatment of dentinal hypersensitivity although a golden standard treatment has not been discovered. Grit blasted functionalized calcium carbonate has a potential to occlude and remineralize exposed dentinal tubules. This could offer a more biological approach on treatment of dentin hypersensitivity