28,028 research outputs found
Solar flare hard X-ray spikes observed by RHESSI: a statistical study
Context. Hard X-ray (HXR) spikes refer to fine time structures on timescales
of seconds to milliseconds in high-energy HXR emission profiles during solar
flare eruptions. Aims. We present a preliminary statistical investigation of
temporal and spectral properties of HXR spikes. Methods. Using a three-sigma
spike selection rule, we detected 184 spikes in 94 out of 322 flares with
significant counts at given photon energies, which were detected from
demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar
Spectroscopic Imager (RHESSI). About one fifth of these spikes are also
detected at photon energies higher than 100 keV. Results. The statistical
properties of the spikes are as follows. (1) HXR spikes are produced in both
impulsive flares and long-duration flares with nearly the same occurrence
rates. Ninety percent of the spikes occur during the rise phase of the flares,
and about 70% occur around the peak times of the flares. (2) The time durations
of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not
dependent on photon energies. The spikes exhibit symmetric time profiles with
no significant difference between rise and decay times. (3) Among the most
energetic spikes, nearly all of them have harder count spectra than their
underlying slow-varying components. There is also a weak indication that spikes
exhibiting time lags in high-energy emissions tend to have harder spectra than
spikes with time lags in low-energy emissions.Comment: 16 pages, 13 figure
Solar flare hard X-ray spikes observed by RHESSI: a case study
In this paper, we analyze hard X-ray spikes observed by RHESSI to understand
their temporal, spectral, and spatial properties. A recently developed
demodulation code was applied to hard X-ray light curves in several energy
bands observed by RHESSI. Hard X-ray spikes were selected from the demodulated
flare light curves. We measured the spike duration, the energy-dependent time
delay, and count spectral index of these spikes. We also located the hard X-ray
source emitting these spikes from RHESSI mapping that was coordinated with
imaging observations in visible and UV wavelengths. We identify quickly varying
structures of <1 s during the rise of hard X-rays in five flares. These hard
X-ray spikes can be observed at photon energies over 100 keV. They exhibit
sharp rise and decay with a duration (FWHM) of less than 1 s. Energy-dependent
time lags are present in some spikes. It is seen that the spikes exhibit harder
spectra than underlying components, typically by 0.5 in the spectral index when
they are fitted to power-law distributions. RHESSI clean maps at 25-100 keV
with an integration of 2 s centered on the peak of the spikes suggest that hard
X-ray spikes are primarily emitted by double foot-point sources in magnetic
fields of opposite polarities. With the RHESSI mapping resolution of ~ 4 arsec,
the hard X-ray spike maps do not exhibit detectable difference in the spatial
structure from sources emitting underlying components. Coordinated
high-resolution imaging UV and infrared observations confirm that hard X-ray
spikes are produced in magnetic structures embedded in the same magnetic
environment of the underlying components. The coordinated high-cadence TRACE UV
observations of one event possibly reveal new structures on spatial scales <1-2
arsec at the time of the spike superposed on the underlying component. They are
probably sources of hard X-ray spikes.Comment: 20 pages, 11 figure
Density oscillations in trapped dipolar condensates
We investigated the ground state wave function and free expansion of a
trapped dipolar condensate. We find that dipolar interaction may induce both
biconcave and dumbbell density profiles in, respectively, the pancake- and
cigar-shaped traps. On the parameter plane of the interaction strengths, the
density oscillation occurs only when the interaction parameters fall into
certain isolated areas. The relation between the positions of these areas and
the trap geometry is explored. By studying the free expansion of the condensate
with density oscillation, we show that the density oscillation is detectable
from the time-of-flight image.Comment: 7 pages, 9 figure
Single transverse-spin asymmetry in Drell-Yan lepton angular distribution
We calculate a single transverse-spin asymmetry for the Drell-Yan
lepton-pair's angular distribution in perturbative QCD. At leading order in the
strong coupling constant, the asymmetry is expressed in terms of a twist-3
quark-gluon correlation function T_F^{(V)}(x_1,x_2). In our calculation, the
same result was obtained in both light-cone and covariant gauge in QCD, while
keeping explicit electromagnetic current conservation for the virtual photon
that decays into the lepton pair. We also present a numerical estimate of the
asymmetry and compare the result to an existing other prediction.Comment: 15 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st
Dynamics of composite Haldane spin chains in IPA-CuCl3
Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3
are studied by cold neutron inelastic scattering. Strongly dispersive gap
excitations are observed. Contrary to previously proposed models, the system is
best described as an asymmetric quantum spin ladder. The observed spectrum is
interpreted in terms of ``composite'' Haldane spin chains. The key difference
from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a
certain critical wave vector.Comment: 4 pages 4 figure
Weakly coupled quantum spin singlets in BaCrO
Using single crystal inelastic neutron scattering with and without
application of an external magnetic field and powder neutron diffraction, we
have characterized magnetic interactions in BaCrO. Even without
field, we found that there exist three singlet-to-triplet excitation modes in
scattering plane. Our complete analysis shows that the three modes
are due to spatially anisotropic interdimer interactions that are induced by
local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller
active Cr. The strong intradimer coupling of meV
and weak interdimer interactions ( meV) makes
BaCrO a good model system for weakly-coupled quantum spin
dimers
Transverse momentum broadening of vector boson production in high energy nuclear collisions
We calculate in perturbative QCD the transverse momentum broadening of vector
boson production in high energy nuclear collisions. We evaluate the effect of
initial-state parton multiple scattering for the production of the Drell-Yan
virtual photon and bosons. We calculate both the initial- and final-state
multiple scattering effect for the production of heavy quarkonia and their
transverse momentum broadening in both NRQCD and Color Evaporation model of
quarkonium formation. We find that J/ and broadening in
hadron-nucleus collision is close to times the corresponding
Drell-Yan broadening, which gives a good description of existing Fermilab data.
Our calculations are also consistent with RHIC data on J/ broadening in
relativistic heavy ion collisions. We predict the transverse momentum
broadening of vector boson (J/, , and ) production in
relativistic heavy ion collisions at the LHC, and discuss the role of the
vector boson broadening in diagnosing medium properties.Comment: 22 pages, 10 figures, revised version to appear in Phys. Rev.
- …