117,043 research outputs found
Coherent atom-trimer conversion in a repulsive Bose-Einstein condensate
We show that the use of a generalized atom-molecule dark state permits the
enhanced coherent creation of triatomic molecules in a repulsive atomic
Bose-Einstein condensate, with further enhancement being possible in the case
of heteronuclear trimers via the constructive interference between two chemical
reaction channels.Comment: 3 figure
PatternCoder: a programming support tool for learning binary class associations and design patterns
Effects of topological edge states on the thermoelectric properties of Bi nanoribbons
Using first-principles calculations combined with Boltzmann transport theory,
we investigate the effects of topological edge states on the thermoelectric
properties of Bi nanoribbons. It is found that there is a competition between
the edge and bulk contributions to the Seebeck coefficients. However, the
electronic transport of the system is dominated by the edge states because of
its much larger electrical conductivity. As a consequence, a room temperature
value exceeding 3.0 could be achieved for both p- and n-type systems when the
relaxation time ratio between the edge and the bulk states is tuned to be 1000.
Our theoretical study suggests that the utilization of topological edge states
might be a promising approach to cross the threshold of the industrial
application of thermoelectricity
Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H and D
The electronic, rotational, and vibrational components of the ultrafast
optical nonlinearity in H and D are measured directly and absolutely at
intensities up to the ionization threshold of 10 W/cm. As the
most basic nonlinear interactions of the simplest molecules exposed to high
fields, these results constitute a benchmark for high field laser-matter theory
and simulation.Comment: 20 pages, 5 figures. References fixe
Polarization and Variations of BL Lacertae Objects
BL Lacertae objects are an extreme subclass of AGNs showing rapid and
large-amplitude variability, high and variable polarization, and core-dominated
radio emissions. If a strong beaming effect is the cause of the extreme
observation properties, one would expect that these properties would be
correlated with each other. Based on the relativistic beaming model,
relationships between the polarization and the magnitude variation in
brightness, as well as the core- dominance parameter are derived and used
statistically to compare with the observational data of a BL Lacertae object
sample. The statistical results are consistent with these correlations, which
suggests that the polarization, the variation, and the core-dominance parameter
are possible indications of the beaming effect.Comment: 6 pages, two figures, one table, some revisions. PASJ, 53 (2001
Complete Tidal Evolution of Pluto-Charon
Both Pluto and its satellite Charon have rotation rates synchronous with
their orbital mean motion. This is the theoretical end point of tidal evolution
where transfer of angular momentum has ceased. Here we follow Pluto's tidal
evolution from an initial state having the current total angular momentum of
the system but with Charon in an eccentric orbit with semimajor axis (where is the radius of Pluto), consistent with its impact origin.
Two tidal models are used, where the tidal dissipation function
1/frequency and constant, where details of the evolution are strongly
model dependent. The inclusion of the gravitational harmonic coefficient
of both bodies in the analysis allows smooth, self consistent
evolution to the dual synchronous state, whereas its omission frustrates
successful evolution in some cases. The zonal harmonic can also be
included, but does not cause a significant effect on the overall evolution. The
ratio of dissipation in Charon to that in Pluto controls the behavior of the
orbital eccentricity, where a judicious choice leads to a nearly constant
eccentricity until the final approach to dual synchronous rotation. The tidal
models are complete in the sense that every nuance of tidal evolution is
realized while conserving total angular momentum - including temporary capture
into spin-orbit resonances as Charon's spin decreases and damped librations
about the same.Comment: 36 pages, including 18 figures; accepted for publication in Icaru
Collective Quartics and Dangerous Singlets in Little Higgs
Any extension of the standard model that aims to describe TeV-scale physics
without fine-tuning must have a radiatively-stable Higgs potential. In little
Higgs theories, radiative stability is achieved through so-called collective
symmetry breaking. In this letter, we focus on the necessary conditions for a
little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet
models, a collective quartic requires an electroweak triplet scalar. In
two-Higgs doublet models, a collective quartic requires a triplet or singlet
scalar. As a corollary of this study, we show that some little Higgs theories
have dangerous singlets, a pathology where collective symmetry breaking does
not suppress quadratically-divergent corrections to the Higgs mass.Comment: 4 pages; v2: clarified the existing literature; v3: version to appear
in JHE
- …
