29,956 research outputs found

    The branch processes of vortex filaments and Hopf Invariant Constraint on Scroll Wave

    Full text link
    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(x⃗,t)Z(\vec{x},t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the "exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the "exclusion principle" is also protected by topology.Comment: 9 pages, 5 figure

    Surface phase separation in nanosized charge-ordered manganites

    Full text link
    Recent experiments showed that the robust charge-ordering in manganites can be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism was evidenced in both nanoparticles and nanowires of charge-ordered manganites. To explain these observations, a phenomenological model based on surface phase separation is proposed. The relaxation of superexchange interaction on the surface layer allows formation of a ferromagnetic shell, whose thickness increases with decreasing grain size. Possible exchange bias and softening of the ferromagnetic transition in nanosized charge-ordered manganites are predicted.Comment: 4 pages, 3 figure

    Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches

    Full text link
    The most recent results of searches at the LHC for the Higgs boson h have turned up possible hints of such a particle with mass m_h about 125 GeV consistent with standard model (SM) expectations. This has many potential implications for the SM and beyond. We consider some of them in the contexts of a simple Higgs-portal dark matter (DM) model, the SM plus a real gauge-singlet scalar field D as the DM candidate, and a couple of its variations. In the simplest model with one Higgs doublet and three or four generations of fermions, for D mass m_D DD tends to have a substantial branching ratio. If future LHC data confirm the preliminary Higgs indications, m_D will have to exceed m_h/2. To keep the DM lighter than m_h/2, one will need to extend the model and also satisfy constraints from DM direct searches. The latter can be accommodated if the model provides sizable isospin violation in the DM-nucleon interactions. We explore this in a two-Higgs-doublet model combined with the scalar field D. This model can offer a 125-GeV SM-like Higgs and a light DM candidate having isospin-violating interactions with nucleons at roughly the required level, albeit with some degree of fine-tuning.Comment: 17 pages, 4 figures, slightly revised, main conclusions unchanged, references added, matches published versio

    Dynamic Potential-Ph Diagrams Application to Electrocatalysts for Water Oxidation

    Get PDF
    The construction and use of "dynamic potential-pH diagrams" (DPPDs), that are intended to extend the usefulness of thermodynamic Pourbaix diagrams to include kinetic considerations is described. As an example, DPPDs are presented for the comparison of electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), an important electrochemical reaction because of its key role in energy conversion devices and biological systems (water electrolyses, photoelectrochemical water splitting, plant photosynthesis). The criteria for obtaining kinetic data are discussed and a 3-D diagram, which shows the heterogeneous electron transfer kinetics of an electrochemical system as a function of pH and applied potential is presented. DPPDs are given for four catalysts: IrO(2), Co(3)O(4), Co(3)O(4) electrodeposited in a phosphate medium (Co-Pi) and Pt, allowing a direct comparison of the activity of different electrode materials over a broad range of experimental conditions (pH, potential, current density). In addition, the experimental setup and the factors affecting the accurate collection and presentation of data (e. g., reference electrode system, correction of ohmic drops, bubble formation) are discussed.Ministry of Education, University and Research PRIN 2008PF9TWZ, 2008N7CYL5Universita degli Studi di MilanoNational Science Foundation CHE-0808927Robert A. Welch Foundation F-0021Center for Electrochemistr

    Beyond the Random Phase Approximation for the Electron Correlation Energy: The Importance of Single Excitations

    Get PDF
    The random phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange energy, represents the state-of-the-art exchange-correlation functional within density-functional theory (DFT). However, the standard RPA practice -- evaluating both the exact-exchange and the RPA correlation energy using local or semilocal Kohn-Sham (KS) orbitals -- leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior is largely corrected by adding a "single excitation" (SE) contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent exact-exchange total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using Kohn-Sham orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of non-covalent intermolecular interactions.Comment: 5 pages, 4 figures, and an additional supplementary materia

    Improved superlensing in two-dimensional photonic crystals with a basis

    Full text link
    We study propagation of light in square and hexagonal two-dimensional photonic crystals. We show, that slabs of these crystals focus light with subwavelength resolution. We propose a systematic way to increase this resolution, at an essentially fixed frequency, by employing a hierarchy of crystals of the same structure, and the same lattice constant, but with an increasingly complex basis.Comment: 16 Pages, 5 Figure
    • …
    corecore