108 research outputs found

    Boundary operators in minimal Liouville gravity and matrix models

    Full text link
    We interpret the matrix boundaries of the one matrix model (1MM) recently constructed by two of the authors as an outcome of a relation among FZZT branes. In the double scaling limit, the 1MM is described by the (2,2p+1) minimal Liouville gravity. These matrix operators are shown to create a boundary with matter boundary conditions given by the Cardy states. We also demonstrate a recursion relation among the matrix disc correlator with two different boundaries. This construction is then extended to the two matrix model and the disc correlator with two boundaries is compared with the Liouville boundary two point functions. In addition, the realization within the matrix model of several symmetries among FZZT branes is discussed.Comment: 26 page

    FZZT Brane Relations in the Presence of Boundary Magnetic Fields

    Full text link
    We show how a boundary state different from the (1,1) Cardy state may be realised in the (m,m+1) minimal string by the introduction of an auxiliary matrix into the standard two hermitian matrix model. This boundary is a natural generalisation of the free spin boundary state in the Ising model. The resolvent for the auxiliary matrix is computed using an extension of the saddle-point method of Zinn-Justin to the case of non-identical potentials. The structure of the saddle-point equations result in a Seiberg-Shih like relation between the boundary states which is valid away from the continuum limit, in addition to an expression for the spectral curve of the free spin boundary state. We then show how the technique may be used to analyse boundary states corresponding to a boundary magnetic field, thereby allowing us to generalise the work of Carroll et al. on the boundary renormalisation flow of the Ising model, to any (m,m+1) model.Comment: 23 pages, 5 figures (3 new). Two new sections added giving examples of the construction. Explanations clarified. Minor changes to the conclusion but main results unchanged. Matches published versio

    Beyond LLM in M-theory

    Get PDF
    The Lin, Lunin, Maldacena (LLM) ansatz in D = 11 supports two independent Killing directions when a general Killing spinor ansatz is considered. Here we show that these directions always commute, identify when the Killing spinors are charged, and show that both their inner product and resulting geometry are governed by two fundamental constants. In particular, setting one constant to zero leads to AdS7 x S4, setting the other to zero gives AdS4 x S7, while flat spacetime is recovered when both these constants are zero. Furthermore, when the constants are equal, the spacetime is either LLM, or it corresponds to the Kowalski-Glikman solution where the constants are simply the mass parameter.Comment: 1+30 pages, footnote adde
    • …
    corecore