23,147 research outputs found
Toe Tip Morphology in Six Species of Salamanders, genus Ambystoma (Caudata: Ambystomatidae) from Arkansas Using Scanning Electron Microscopy
The toe tip friction surface in six species of Ambystoma (A. annulatum, A.maculatum, A.opacum, A. talpoideum, A. texanum, and A. tigrinum) from Arkansas was examined using scanning electron microscopy. We found no sexual dimorphism in cell surface ultrastructure. Variation within and between species was considerable. The most active burrower, A. tigrinum, possessed the most disorganized cell surface, whereas the least active burrowers (A.annulatum, A.maculatum, and A. opacum) had morphologically similar and relatively smooth toe tips. In A. talpoideum and A. texanum, cell surfaces exhibited microprojections. Only these two species possessed mucous pores in close proximity to the friction surface. The microstructure of cell surfaces transcended species groups in Ambystoma and would not represent a reliable taxonomic tool
Possible multiparticle ridge-like correlations in very high multiplicity proton-proton collisions
The CMS collaboration at the LHC has reported a remarkable and unexpected
phenomenon in very high-multiplicity high energy proton-proton collisions: a
positive correlation between two particles produced at similar azimuthal
angles, spanning a large range in rapidity. We suggest that this "ridge"-like
correlation may be a reflection of the rare events generated by the collision
of aligned flux tubes connecting the valence quarks in the wave functions of
the colliding protons. The "spray" of particles resulting from the approximate
line source produced in such inelastic collisions then gives rise to events
with a strong correlation between particles produced over a large range of both
positive and negative rapidity. We suggest an additional variable that is
sensitive to such a line source which is related to a commonly used measure,
ellipticity.Comment: Updated figure. Version to be published in Physics Letters
Assessing the performance of protective winter covers for outdoor marble statuary: pilot investigation
Outdoor statuary in gardens and parks in temperate climates has a tradition of being covered during the winter, to protect against external conditions. There has been little scientific study of the environmental protection that different types of covers provide. This paper examines environmental conditions provided by a range of covers used to protect marble statuary at three sites in the UK. The protection required depends upon the condition of the marble. Although statues closely wrapped and with a layer of insulation provide good protection, this needs to be considered against the potential physical damage of close wrapping a fragile deteriorated surface
Light-Front Holography: A First Approximation to QCD
Starting from the Hamiltonian equation of motion in QCD, we identify an
invariant light-front coordinate which allows the separation of the
dynamics of quark and gluon binding from the kinematics of constituent spin and
internal orbital angular momentum. The result is a single variable light-front
Schrodinger equation for QCD which determines the eigenspectrum and the
light-front wavefunctions of hadrons for general spin and orbital angular
momentum. This light-front wave equation is equivalent to the equations of
motion which describe the propagation of spin- modes on anti-de Sitter (AdS)
space.Comment: 4 pages. The limits of validity of the model are further discussed.
To appear in Physical Review Letter
Confinement contains condensates
Dynamical chiral symmetry breaking and its connection with the generation of
hadron masses has historically been viewed as a vacuum phenomenon. We argue
that confinement makes such a position untenable. If quark-hadron duality is a
reality in QCD, then condensates, those quantities that were commonly viewed as
constant empirical mass-scales that fill all spacetime, are instead wholly
contained within hadrons; viz., they are a property of hadrons themselves and
expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We
explain that this paradigm is consistent with empirical evidence, and
incidentally expose misconceptions in a recent Comment.Comment: 10 pages, 2 figure
Spacelab baseline ECS trace contaminant removal test program
An estimate of the Spacelab Baseline Environmental Control System's contaminated removal capability was required to allow determination of the need for a supplemental trace contaminant removal system. Results from a test program to determine this removal capability are presented
Ridge Production in High-Multiplicity Hadronic Ultra-Peripheral Proton-Proton Collisions
An unexpected result at the RHIC and the LHC is the observation that
high-multiplicity hadronic events in heavy-ion and proton-proton collisions are
distributed as two "ridges", approximately flat in rapidity and opposite in
azimuthal angle. We propose that the origin of these events is due to the
inelastic collisions of aligned gluonic flux tubes that underly the color
confinement of the quarks in each proton. We predict that high-multiplicity
hadronic ridges will also be produced in the high energy photon-photon
collisions accessible at the LHC in ultra-peripheral proton-proton collisions
or at a high energy electron-positron collider. We also note the orientation of
the flux tubes between the quark and antiquark of each high energy photon will
be correlated with the plane of the scattered proton or lepton. Thus hadron
production and ridge formation can be controlled in a novel way at the LHC by
observing the azimuthal correlations of the scattering planes of the
ultra-peripheral protons with the orientation of the produced ridges.
Photon-photon collisions can thus illuminate the fundamental physics underlying
the ridge effect and the physics of color confinement in QCD.Comment: Presented by SJB at Photon 2017: The International Conference on the
Structure and the Interactions of the Photon and the International Workshop
on Photon-Photon Collisions. CERN, May 22-26, 2017. References adde
Periodicity of mass extinctions without an extraterrestrial cause
We study a lattice model of a multi-species prey-predator system. Numerical
results show that for a small mutation rate the model develops irregular
long-period oscillatory behavior with sizeable changes in a number of species.
The periodicity of extinctions on Earth was suggested by Raup and Sepkoski but
so far is lacking a satisfactory explanation. Our model indicates that this is
a natural consequence of the ecosystem dynamics, not the result of any
extraterrestrial cause.Comment: 4 pages, accepted in Phys.Rev.
Hadron Spin Dynamics
Spin effects in exclusive and inclusive reactions provide an essential new
dimension for testing QCD and unraveling hadron structure. Remarkable new
experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many
challenges to theory, including measurements at HERMES and SMC of the single
spin asymmetries in pion electroproduction, where the proton is polarized
normal to the scattering plane. This type of single spin asymmetry may be due
to the effects of rescattering of the outgoing quark on the spectators of the
target proton, an effect usually neglected in conventional QCD analyses. Many
aspects of spin, such as single-spin asymmetries and baryon magnetic moments
are sensitive to the dynamics of hadrons at the amplitude level, rather than
probability distributions. I illustrate the novel features of spin dynamics for
relativistic systems by examining the explicit form of the light-front
wavefunctions for the two-particle Fock state of the electron in QED, thus
connecting the Schwinger anomalous magnetic moment to the spin and orbital
momentum carried by its Fock state constituents and providing a transparent
basis for understanding the structure of relativistic composite systems and
their matrix elements in hadronic physics. I also present a survey of
outstanding spin puzzles in QCD, particularly the double transverse spin
asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi
puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third
Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin
Interpenetration as a Mechanism for Liquid-Liquid Phase Transitions
We study simple lattice systems to demonstrate the influence of
interpenetrating bond networks on phase behavior. We promote interpenetration
by using a Hamiltonian with a weakly repulsive interaction with nearest
neighbors and an attractive interaction with second-nearest neighbors. In this
way, bond networks will form between second-nearest neighbors, allowing for two
(locally) distinct networks to form. We obtain the phase behavior from analytic
solution in the mean-field approximation and exact solution on the Bethe
lattice. We compare these results with exact numerical results for the phase
behavior from grand canonical Monte Carlo simulations on square, cubic, and
tetrahedral lattices. All results show that these simple systems exhibit rich
phase diagrams with two fluid-fluid critical points and three thermodynamically
distinct phases. We also consider including third-nearest-neighbor
interactions, which give rise to a phase diagram with four critical points and
five thermodynamically distinct phases. Thus the interpenetration mechanism
provides a simple route to generate multiple liquid phases in single-component
systems, such as hypothesized in water and observed in several model and
experimental systems. Additionally, interpenetration of many such networks
appears plausible in a recently considered material made from nanoparticles
functionalized by single strands of DNA.Comment: 12 pages, 9 figures, submitted to Phys. Rev.
- …
