411,299 research outputs found
Integration, management and communication of heterogeneous design resources with WWW technologies
Recently, advanced information technologies have opened new pos-sibilities for collaborative designs. In this paper, a Web-based collaborative de-sign environment is proposed, where heterogeneous design applications can be integrated with a common interface, managed dynamically for publishing and searching, and communicated with each other for integrated multi-objective de-sign. The CORBA (Common Object Request Broker Architecture) is employed as an implementation tool to enable integration and communication of design application programs; and the XML (eXtensible Markup Language) is used as a common data descriptive language for data exchange between heterogeneous applications and for resource description and recording. This paper also intro-duces the implementation of the system and the encapsulating issues of existing legacy applications. At last, an example of gear design based on the system is il-lustrated to identify the methods and procedure developed by this research
Classification for the universal scaling of N\'eel temperature and staggered magnetization density of three-dimensional dimerized spin-1/2 antiferromagnets
Inspired by the recently theoretical development relevant to the experimental
data of TlCuCl, particularly those associated with the universal scaling
between the N\'eel temperature and the staggered magnetization density
, we carry a detailed investigation of 3-dimensional (3D) dimerized
quantum antiferromagnets using the first principles quantum Monte Carlo
calculations. The motivation behind our study is to better understand the
microscopic effects on these scaling relations of and , hence to
shed some light on some of the observed inconsistency between the theoretical
and the experimental results. Remarkably, for the considered 3D dimerized
models, we find that the established universal scaling relations can indeed be
categorized by the amount of stronger antiferromagnetic couplings connected to
a lattice site. Convincing numerical evidence is provided to support this
conjecture. The relevance of the outcomes presented here to the experiments of
TlCuCl is briefly discussed as well.Comment: 9 pages, 27 figure
Correlated Spectral and Temporal Variability in the High-Energy Emission from Blazars
Blazar flare data show energy-dependent lags and correlated variability
between optical/X-ray and GeV-TeV energies, and follow characteristic
trajectories when plotted in the spectral-index/flux plane. This behavior is
qualitatively explained if nonthermal electrons are injected over a finite time
interval in the comoving plasma frame and cool by radiative processes.
Numerical results are presented which show the importance of the effects of
synchrotron self-Compton cooling and plasmoid deceleration. The use of INTEGRAL
to advance our understanding of these systems is discussed.Comment: 8 pages, 5 figures, uses epsf.sty, rotate.sty Invited paper in "The
Extreme Universe," 3rd INTEGRAL Workshop, 14-18 September 1998, Taorimina,
Ital
Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS
Chromospheric evaporation refers to dynamic mass motions in flare loops as a
result of rapid energy deposition in the chromosphere. These have been observed
as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines
corresponding to upward motions at a few tens to a few hundreds of km/s. Past
spectroscopic observations have also revealed a dominant stationary component,
in addition to the blueshifted component, in emission lines formed at high
temperatures (~10 MK). This is contradictory to evaporation models predicting
predominant blueshifts in hot lines. The recently launched Interface Region
Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic
observations that focus on the chromosphere and transition region in the UV
passband. Using the new IRIS observations, combined with coordinated
observations from the EUV Imaging Spectrometer, we study the chromospheric
evaporation process from the upper chromosphere to corona during an X1.0 flare
on 2014 March 29. We find evident evaporation signatures, characterized by
Doppler shifts and line broadening, at two flare ribbons separating from each
other, suggesting that chromospheric evaporation takes place in successively
formed flaring loops throughout the flare. More importantly, we detect dominant
blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with
theoretical predictions. We also find that, in this flare, gentle evaporation
occurs at some locations in the rise phase of the flare, while explosive
evaporation is detected at some other locations near the peak of the flare.
There is a conversion from gentle to explosive evaporation as the flare
evolves.Comment: ApJ in pres
Theory of the vortex matter transformations in high Tc superconductor YBCO
Flux line lattice in type II superconductors undergoes a transition into a
"disordered" phase like vortex liquid or vortex glass, due to thermal
fluctuations and random quenched disorder. We quantitatively describe the
competition between the thermal fluctuations and the disorder using the
Ginzburg -- Landau approach. The following T-H phase diagram of YBCO emerges.
There are just two distinct thermodynamical phases, the homogeneous and the
crystalline one, separated by a single first order transitions line. The line
however makes a wiggle near the experimentally claimed critical point at 12T.
The "critical point" is reinterpreted as a (noncritical) Kauzmann point in
which the latent heat vanishes and the line is parallel to the T axis. The
magnetization, the entropy and the specific heat discontinuities at melting
compare well with experiments.Comment: 4 pages 3 figure
A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: The case of XSS J12270-4859
XSS J12270-4859 is the only low mass X-ray binary (LMXB) with a proposed
persistent gamma-ray counterpart in the Fermi-LAT domain, 2FGL 1227.7-4853.
Here, we present the results of the analysis of recent INTEGRAL observations,
aimed at assessing the long-term variability of the hard X-ray emission, and
thus the stability of the accretion state. We confirm that the source behaves
as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS
J12270-4859 hosts a neutron star in a propeller state, a state we investigate
in detail, developing a theoretical model to reproduce the associated X-ray and
gamma-ray properties. This model can be understood as being of a more general
nature, representing a viable alternative by which LMXBs can appear as
gamma-ray sources. In particular, this may apply to the case of millisecond
pulsars performing a transition from a state powered by the rotation of their
magnetic field, to a state powered by matter in-fall, such as that recently
observed from the transitional pulsar PSR J1023+0038. While the surface
magnetic field of a typical NS in a LMXB is lower by more than four orders of
magnitude than the much more intense fields of neutron stars accompanying
high-mass binaries, the radius at which the matter in-flow is truncated in a
NS-LMXB system is much lower. The magnetic field at the magnetospheric
interface is then orders of magnitude larger at this interface, and as
consequence, so is the power to accelerate electrons. We demonstrate that the
cooling of the accelerated electron population takes place mainly through
synchrotron interaction with the magnetic field permeating the interface, and
through inverse Compton losses due to the interaction between the electrons and
the synchrotron photons they emit. We found that self-synchrotron Compton
processes can explain the high energy phenomenology of XSS J12270-4859.Comment: 12 pages, 3 figures, accepted for publication in MNRAS. References
update
Probing the Mechanisms of Fibril Formation Using Lattice Models
Using exhaustive Monte Carlo simulations we study the kinetics and mechanism
of fibril formation using lattice models as a function of temperature and the
number of chains. While these models are, at best, caricatures of peptides, we
show that a number of generic features thought to govern fibril assembly are
present in the toy model. The monomer, which contains eight beads made from
three letters (hydrophobic, polar, and charged), adopts a compact conformation
in the native state. The kinetics of fibril assembly occurs in three distinct
stages. In each stage there is a cascade of events that transforms the monomers
and oligomers to ordered structures. In the first "burst" stage highly mobile
oligomers of varying sizes form. The conversion to the aggregation-prone
conformation occurs within the oligomers during the second stage. As time
progresses, a dominant cluster emerges that contains a majority of the chains.
In the final stage, the aggregation-prone conformation particles serve as a
template onto which smaller oligomers or monomers can dock and undergo
conversion to fibril structures. The overall time for growth in the latter
stages is well described by the Lifshitz-Slyazov growth kinetics for
crystallization from super-saturated solutions.Comment: 27 pages, 6 figure
- …
