887 research outputs found

    Spin dynamics and magnetic-field-induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    Full text link
    The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic-field-induced circular polarization of photoluminescence, PcP_c, is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behaviour of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole gg factor, ghh=+3.5g_{hh}=+3.5, and the spin relaxation times of electron, τse=33 μ\tau_{se} = 33~\mus, and hole, τsh=3 μ\tau_{sh} = 3~\mus, bound in the exciton.Comment: 17 pages, 16 figure

    Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap

    Full text link
    The dynamics of exciton recombination in an ensemble of indirect band-gap (In,Al)As/AlAs quantum dots with type-I band alignment is studied. The lifetime of confined excitons which are indirect in momentum-space is mainly influenced by the sharpness of the heterointerface between the (In,Al)As quantum dot and the AlAs barrier matrix. Time-resolved photoluminescence experiments and theoretical model calculations reveal a strong dependence of the exciton lifetime on the thickness of the interface diffusion layer. The lifetime of excitons with a particular optical transition energy varies because this energy is obtained for quantum dots differing in size, shape and composition. The different exciton lifetimes, which result in photoluminescence with non-exponential decay obeying a power-law function, can be described by a phenomenological distribution function, which allows one to explain the photoluminescence decay with one fitting parameter only.Comment: 10 pages, 7 figure

    Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    Full text link
    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical methods and simulated numerically. In the samples with nonhomogeneous magnetic ion distribution this dynamics is contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. The spin diffusion coefficient of 7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of experimental and numerical results. Calculations of the giant Zeeman splitting of the exciton states and the magnetization dynamics in the ordered alloys and parabolic quantum wells fabricated by the digital growth technique show perfect agreement with the experimental data. In both structure types the spin diffusion has an essential contribution to the magnetization dynamics.Comment: 12 pages, 11 figure
    corecore