248,691 research outputs found
Weak Ferromagnetic Exchange and Anomalous Specific Heat in ZnCu3(OH)6Cl2
Experimental evidence for a plethora of low energy spin excitations in the
spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 may be understandable in terms of
an extended Fermi surface of spinons coupled to a U(1) gauge field. We carry
out variational calculations to examine the possibility that such a state may
be energetically viable. A Gutzwiller-projected wavefunction reproduces the
dimerization of a kagome strip found previously by DMRG. Application to the
full kagome lattice shows that the inclusion of a small ferromagnetic
next-nearest-neighbor interaction favors a ground state with a spinon Fermi
surface.Comment: 4 pages, 3 figures, some clarifications to the tex
Melosh rotation: source of the proton's missing spin
It is shown that the observed small value of the integrated spin structure
function for protons could be naturally understood within the naive quark model
by considering the effect from Melosh rotation. The key to this problem lies in
the fact that the deep inelastic process probes the light-cone quarks rather
than the instant-form quarks, and that the spin of the proton is the sum of the
Melosh rotated light-cone spin of the individual quarks rather than simply the
sum of the light-cone spin of the quarks directly.Comment: 5 latex page
Photon-meson transition form factors of light pseudoscalar mesons
The photon-meson transition form factors of light pseudoscalar mesons , , and are systematically calculated in a
light-cone framework, which is applicable as a light-cone quark model at low
and is also physically in accordance with the light-cone pQCD approach
at large . The calculated results agree with the available experimental
data at high energy scale. We also predict the low behaviors of the
photon-meson transition form factors of , and , which are measurable in process via Primakoff
effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR
A Note on Pretzelosity TMD Parton Distribution
We show that the transverse-momentum-dependent parton distribution, called as
Pretzelosity function, is zero at any order in perturbation theory of QCD for a
single massless quark state. This implies that Pretzelosity function is not
factorized with the collinear transversity parton distribution at twist-2, when
the struck quark has a large transverse momentum. Pretzelosity function is in
fact related to collinear parton distributions defined with twist-4 operators.
In reality, Pretzelosity function of a hadron as a bound state of quarks and
gluons is not zero. Through an explicit calculation of Pretzelosity function of
a quark combined with a gluon nonzero result is found.Comment: improved explanation, published version in Phys. Lett.
Geophysical and astronomical models applied in the analysis of very long baseline interferometry
Very long baseline interferometry presents an opportunity to measure at the centimeter level such geodetic parameters as baseline length and instantaneous pole position. In order to achieve such precision, the geophysical and astronomical models used in data analysis must be as accurate as possible. The Mark-3 interactive data analysis system includes a number of refinements beyond conventional practice in modeling precession, nutation, diurnal polar motion, UT1, solid Earth tides, relativistic light deflection, and reduction to solar system barycentric coordinates. The algorithms and their effects on the recovered geodetic, geophysical, and astrometric parameters are discussed
Pion-photon and photon-pion transition form factors in light-cone formalism
We derive the minimal Fock-state expansions of the pion and the photon wave
functions in light-cone formalism, then we calculate the pion-photon and the
photon-pion transition form factors of and
processes by employing these
quark-antiquark wave functions of the pion and the photon. We find that our
calculation for the transition form factor
agrees with the experimental data at low and moderately high energy scale.
Moreover, the physical differences and inherent connections between the
transition form factors of and have been illustrated, which indicate that these
two physical processes are intrinsically related. In addition, we also discuss
the form factor and the decay width at .Comment: 20 pages, 2 figure
The Mark 3 data base handler
A data base handler which would act to tie Mark 3 system programs together is discussed. The data base handler is written in FORTRAN and is implemented on the Hewlett-Packard 21MX and the IBM 360/91. The system design objectives were to (1) provide for an easily specified method of data interchange among programs, (2) provide for a high level of data integrity, (3) accommodate changing requirments, (4) promote program accountability, (5) provide a single source of program constants, and (6) provide a central point for data archiving. The system consists of two distinct parts: a set of files existing on disk packs and tapes; and a set of utility subroutines which allow users to access the information in these files. Users never directly read or write the files and need not know the details of how the data are formatted in the files. To the users, the storage medium is format free. A user does need to know something about the sequencing of his data in the files but nothing about data in which he has no interest
- …
