23,234 research outputs found

    Bosonic Super Liouville System: Lax Pair and Solution

    Get PDF
    We study the bosonic super Liouville system which is a statistical transmutation of super Liouville system. Lax pair for the bosonic super Liouville system is constructed using prolongation method, ensuring the Lax integrability, and the solution to the equations of motion is also considered via Leznov-Saveliev analysis.Comment: LaTeX, no figures, 11 page

    Exact 1-D Model for Coherent Synchrotron Radiation with Shielding and Bunch Compression

    Full text link
    Coherent Synchrotron Radiation has been studied effectively using a 1-dimensional model for the charge distribution in the realm of small angle approximations and high energies. Here we use Jefimenko's form of Maxwell's equations, without such approximations, to calculate the exact wake-fields due to this effect in multiple bends and drifts. It has been shown before that the influence of a drift can propagate well into a subsequent bend. We show, for reasonable parameters, that the influence of a previous bend can also propagate well into a subsequent bend, and that this is especially important at the beginning of a bend. Shielding by conducting parallel plates is simulated using the image charge method. We extend the formalism to situations with compressing and decompressing distributions, and conclude that simpler approximations to bunch compression usually overestimates the effect. Additionally, an exact formula for the coherent power radiated by a Gaussian bunch is derived by considering the coherent synchrotron radiation spectrum, and is used to check the accuracy of wake-field calculations

    Simulation of January 1-7, 1978 events

    Get PDF
    The solar wind disturbances of January 1 to 7, 1978 are reconstructed by a modeling method. First, the interplanetary magnetic field (IMF) background pattern, including a corotating shock, is reproduced using the Stanford source surface map. Then, two solar flares with their onset times on January 1, 0717 UT at S17 deg E10 deg and 2147 UT S17 deg E32 deg, respectively, are selected to generate two interplanetary transient shocks. It is shown that these two shocks interacted with the corotating shock, resulting in a series of interplanetary events observed by four spacecraft, Helios 1 and 2, IMP-8 (Interplanetary Monitoring Platform 8), and Voyager 2. Results show that these three shock waves interact and coalesce in interplanetary space such that Helios 2 and Voyager 2 observed only one shock and Helios 1 and IMP-8 observed two shocks. All shocks observed by the four spacecraft, except the corotating shock at Helios 1, are either a transient shock or a shock which is formed from coalescing of the transient shocks with the corotating shock. The method is useful in reconstructing a very complicated chain of interplanetary events observed by a number of spacecraft

    Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket

    Get PDF

    π0γγ\pi^0\to\gamma^*\gamma transition form factor within Light Front Quark Model

    Full text link
    We study the transition form factor of π0γγ\pi^0\to\gamma^* \gamma as a function of the momentum transfer Q2Q^2 within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large Q2Q^2 region.Comment: 11 pages, 4 figures, accepted for publication in PR

    On the Classical W4(2)W_{4}^{(2)} Algebra

    Full text link
    We consider the classical \w42 algebra from the integrable system viewpoint. The integrable evolution equations associated with the \w42 algebra are constructed and the Miura maps , consequently modifications, are presented. Modifying the Miura maps, we give a free field realization the classical \w42 algebra. We also construct the Toda type integrable systems for it.Comment: 14 pages, latex, no figure

    Quantum Creation of Topological Black Hole

    Get PDF
    The constrained instanton method is used to study quantum creation of a vacuum or charged topological black hole. At the WKBWKB level, the relative creation probability is the exponential of a quarter sum of the horizon areas associated with the seed instanton.Comment: Report-no change onl

    Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model

    Full text link
    This paper considers the optimal dividend payment problem in piecewise-deterministic compound Poisson risk models. The objective is to maximize the expected discounted dividend payout up to the time of ruin. We provide a comparative study in this general framework of both restricted and unrestricted payment schemes, which were only previously treated separately in certain special cases of risk models in the literature. In the case of restricted payment scheme, the value function is shown to be a classical solution of the corresponding HJB equation, which in turn leads to an optimal restricted payment policy known as the threshold strategy. In the case of unrestricted payment scheme, by solving the associated integro-differential quasi-variational inequality, we obtain the value function as well as an optimal unrestricted dividend payment scheme known as the barrier strategy. When claim sizes are exponentially distributed, we provide easily verifiable conditions under which the threshold and barrier strategies are optimal restricted and unrestricted dividend payment policies, respectively. The main results are illustrated with several examples, including a new example concerning regressive growth rates.Comment: Key Words: Piecewise-deterministic compound Poisson model, optimal stochastic control, HJB equation, quasi-variational inequality, threshold strategy, barrier strateg

    First measurements of the flux integral with the NIST-4 watt balance

    Full text link
    In early 2014, construction of a new watt balance, named NIST-4, has started at the National Institute of Standards and Technology (NIST). In a watt balance, the gravitational force of an unknown mass is compensated by an electromagnetic force produced by a coil in a magnet system. The electromagnetic force depends on the current in the coil and the magnetic flux integral. Most watt balances feature an additional calibration mode, referred to as velocity mode, which allows one to measure the magnetic flux integral to high precision. In this article we describe first measurements of the flux integral in the new watt balance. We introduce measurement and data analysis techniques to assess the quality of the measurements and the adverse effects of vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum. Meas. This Journal can be found online at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
    corecore