9,925 research outputs found

    Extended Source Diffraction Effects Near Gravitational Lens Fold Caustics

    Get PDF
    Calculations are presented detailing the gravitational lens diffraction due to the steep brightness gradient of the limb of a stellar source. The lensing case studied is the fold caustic crossing. The limb diffraction signal greatly exceeds that due to the disk as a whole and should be detectable for white dwarf sources in our Galaxy and it's satellites with existing telescopes. Detection of this diffraction signal would provide an additional mathematical constraint, reducing the degeneracy among models of the lensing geometry. The diffraction pattern provides pico-arcsecond resolution of the limb profile.Comment: 19 pages including 17 figures, Accepted for publication in ApJ, Minor conceptual change from previous versio

    Magnification relations in gravitational lensing via multidimensional residue integrals

    Get PDF
    We investigate the so-called magnification relations of gravitational lensing models. We show that multidimensional residue integrals provide a simple explanation for the existence of these relations, and an effective method of computation. We illustrate the method with several examples, thereby deriving new magnification relations for galaxy lens models and microlensing (point mass lensing).Comment: 16 pages, uses revtex4, submitted to Journal of Mathematical Physic

    Secure Identification of Free-Floating Planets

    Full text link
    Among the methods proposed to detect extrasolar planets, microlensing is the only technique that can detect free-floating planets. Free-floating planets are detected through the channel of short-duration isolated lensing events. However, if a seemingly isolated planetary event is detected, it is difficult to firmly conclude that the event is caused by a free-floating planet because a wide-separation planet can also produce an isolated event. There were several methods proposed to break the degeneracy between the isolated planetary events produced by the free-floating and wide-separation planets, but they are incomplete. In this paper, we show that free-floating planets can be securely identified by conducting astrometric follow-up observations of isolated events to be detected in future photometric lensing surveys by using high-precision interferometers to be operated contemporarily with the photometric surveys. The method is based on the fact that astrometric lensing effect covers much longer range of the lens-source separation than the photometric effect. We demonstrate that several astrometric follow-up observations of isolated planetary events associated with source stars brighter than V19V\sim 19 by using the {\it Space Interferometry Mission} with an exposure time of 10min\lesssim 10 {\rm min} for each observation will make it possible to measure the centroid shift induced by primaries with projected separations up to 100AU\sim 100 {\rm AU}. Therefore, the proposed method is far more complete than previously proposed methods that are flawed by the limited applicability only to planets with projected separations 20AU\lesssim 20 {\rm AU} or planets accompanied by bright primaries.Comment: 5 pages including 2 figure

    Segregation during directional melting and its implications on seeded crystal growth: A theoretical analysis

    Get PDF
    Directional melting of binary systems, as encountered during seeding in melt growth, is analyzed for concurrent compositional changes at the crystal-melt interface. It is shown that steady state conditions cannot normally be reached during seeding and that the growth interface temperature at the initial stages of seeded growth is a function of backmelt conditions. The theoretical treatment is numerically applied to Hg1-xCdXTe and Ga-doped Ge

    Some effects of dust on photometry of high-z galaxies: Confounding the effects of evolution

    Get PDF
    Photometric observations of very distant galaxies--e.g., color vs. z or magnitude vs. z, have been used over the past decade or so in investigations into the evolution of the stellar component. Numerous studies have predicted significant color variations as a result of evolution, in addition to the shifting of different rest wavelengths into the band of observation. Although there is significant scatter, the data can be fit with relatively straightforward, plausible models for galaxian evolution. In very few cases are the effects of dust extinction included in the models. This is due in a large part to the uncertainty about the distribution and optical properties of the grains, and even whether or not they are present in significant numbers in some types of galaxies such as ellipticals. It is likely that the effects of dust on broadband observations are the greatest uncertainty in studies of very distant galaxies. We use a detailed Monte Carlo radiative transfer model within a spherical geometry for different star/dust distributions to examine the effects of dust on the broadband colors of galaxies as a function of redshift. The model fully accounts for absorption and angular redistribution in scattering. In this summary, we consider only the effects on color vs. redshift for three simple geometries each with the same total dust optical depth. Elsewhere at this conference, Capuano, Thronson, & Witt consider other effects of altering the relative dust/star distribution

    Analytic Time Delays and H_0 Estimates for Gravitational Lenses

    Get PDF
    We study gravitational lens time delays for a general family of lensing potentials, which includes the popular singular isothermal elliptical potential and singular isothermal elliptical density distribution but allows general angular structure. Using a novel approach, we show that the time delay can be cast in a very simple form, depending only on the observed image positions. Including an external shear changes the time delay proportional to the shear strength, and varying the radial profile of the potential changes the time delay approximately linearly. These analytic results can be used to obtain simple estimates of the time delay and the Hubble constant in observed gravitational lenses. The naive estimates for four of five time delay lenses show surprising agreement with each other and with local measurements of H_0; the complicated Q 0957+561 system is the only outlier. The agreement suggests that it is reasonable to use simple isothermal lens models to infer H_0, although it is still important to check this conclusion by examining detailed models and by measuring more lensing time delays.Comment: 16 pages with 2 embedded figures; submitted to Ap

    Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    Get PDF
    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions

    Probing the Atmospheres of Planets Orbiting Microlensed Stars via Polarization Variability

    Get PDF
    We present a new method to identify and probe planetary companions of stars in the Galactic Bulge and Magellanic Clouds using gravitational microlensing. While spectroscopic studies of these planets is well beyond current observational techniques, monitoring polarization fluctuations during high magnification events induced by binary microlensing events will probe the composition of the planetary atmospheres, an observation which otherwise is currently unattainable even for nearby planetary systems.Comment: 7 pages, 2 figures. To appear in Astrophysical Journal Letter

    Expansion of the Planet Detection Channels in Next-Generation Microlensing Surveys

    Full text link
    We classify various types of planetary lensing signals and the channels of detecting them. We estimate the relative frequencies of planet detections through the individual channels with special emphasis on the new channels to be additionally provided by future lensing experiments that will survey wide fields continuously at high cadence by using very large-format imaging cameras. From this investigation, we find that the fraction of wide-separation planets that would be discovered through the new channels of detecting planetary signals as independent and repeating events would be substantial. We estimate that the fraction of planets detectable through the new channels would comprise ~15 -- 30% of all planets depending on the models of the planetary separation distribution and mass ratios of planets. Considering that a significant fraction of planets might exist in the form of free-floating planets, the frequency of planets to be detected through the new channel would be even higher. With the expansion of the channels of detecting planet, future lensing surveys will greatly expand the range of planets to be probed.Comment: 6 pages, 3 figures, one tabl

    Roll diffusion bonding of titanium alloy panels

    Get PDF
    Roll diffusion bonding technique is used for fabricating T-stiffened panel assemblies from titanium alloy. The single unit fabrication exhibits excellent strength characteristics under tensile and compressive loads. This program is applied to structures in which weight/strength ratio and integral construction are important considerations
    corecore