75 research outputs found

    Orbital ordering in charge transfer insulators

    Get PDF
    We discuss a new mechanism of orbital ordering, which in charge transfer insulators is more important than the usual exchange interactions and which can make the very type of the ground state of a charge transfer insulator, i.e. its orbital and magnetic ordering, different from that of a Mott-Hubbard insulator. This purely electronic mechanism allows us to explain why orbitals in Jahn-Teller materials typically order at higher temperatures than spins, and to understand the type of orbital ordering in a number of materials, e.g. K_2CuF_4, without invoking the electron-lattice interaction.Comment: 4 pages, 2 figure

    Consistent LDA'+DMFT approach to electronic structure of transition metal oxides: charge transfer insulators and correlated metals

    Full text link
    We discuss the recently proposed LDA'+DMFT approach providing consistent parameter free treatment of the so called double counting problem arising within the LDA+DMFT hybrid computational method for realistic strongly correlated materials. In this approach the local exchange-correlation portion of electron-electron interaction is excluded from self consistent LDA calculations for strongly correlated electronic shells, e.g. d-states of transition metal compounds. Then the corresponding double counting term in LDA+DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit - FLL) form of the Hubbard model interaction term. We present the results of extensive LDA'+DMFT calculations of densities of states, spectral densities and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in paramagnetic phase: charge transfer insulators (MnO, CoO and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems LDA'+DMFT qualitatively improves the conventional LDA+DMFT results with FLL type of double counting, where CoO and NiO were obtained to be metals. We also include in our calculations transition metal 4s-states located near the Fermi level missed in previous LDA+DMFT studies of these monooxides. General agreement with optical and X-ray experiments is obtained. For strongly correlated metals LDA^\prime+DMFT results agree well with earlier LDA+DMFT calculations and existing experiments. However, in general LDA'+DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen states positions, as compared to the conventional LDA+DMFT.Comment: 13 pages, 11 figures, 1 table. In v2 there some additional clarifications are include

    The Origin of Magnetic Interactions in Ca3Co2O6

    Full text link
    We investigate the microscopic origin of the ferromagnetic and antiferromagnetic spin exchange couplings in the quasi one-dimensional cobalt compound Ca3Co2O6. In particular, we establish a local model which stabilizes a ferromagnetic alignment of the S=2 spins on the cobalt sites with trigonal prismatic symmetry, for a sufficiently strong Hund's rule coupling on the cobalt ions. The exchange is mediated through a S=0 cobalt ion at the octahedral sites of the chain structure. We present a strong coupling evaluation of the Heisenberg coupling between the S=2 Co spins on a separate chain. The chains are coupled antiferromagnetically through super-superexchange via short O-O bonds.Comment: 5 Pages, 3 Figures; added anisotropy term in eq. 9; extended discussion of phase transitio

    Signatures of Stripe Phases in Hole Doped La2NiO4La_2NiO_4

    Full text link
    We study nickelate-centered and oxygen-centered stripe phases in doped La2_{2}NiO4_{4} materials. We use an inhomogeneous Hartree-Fock and random-phase approximation approach including both electron-electron and electron-lattice(e-l) coupling for a layer of La2_{2}NiO4_{4}. We find that whether the ground state after commensurate hole doping comprises Ni-centered or O-centered charge-localized stripes depends sensitively on the e-l interaction. With increasing e-l interaction strength, a continuous transition from an O-centered stripe phase to a Ni-centered one is found. Various low- and high-energy signatures of these two kinds of stripe phases are predicted, which can clearly distinguish them. These signatures reflect the strongly correlated spin-charge-lattice features in the vicinity of Ni-centered or O-centered stripe domains. The importance of e-l interaction for recent experiments on stripe phases is discussed.Comment: 11 pages, 12 figures, to appear in Phys.Rev.B(July 1,1998

    Mechanism of resonant x-ray magnetic scattering in NiO

    Full text link
    We study the resonant x-ray magnetic scattering (RXMS) around the K edge of Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and the 3d states as localized states. We propose a mechanism that the 4p states are coupled to the magnetic order through the intra-atomic Coulomb interaction between the 4p and the 3d states and through the p-d mixing to the 3d states of neighboring Ni atoms. These couplings induce the orbital moment in the 4p band, and thereby give rise to the RXMS intensity at the K edge in the dipolar process. It is found that the spin-orbit interaction in the 4p band has negligibly small contribution to the RXMS intensity. The present model reproduces well the experimental spectra. We also discuss the azimuthal angle dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure

    Implementation of the Projector Augmented Wave LDA+U Method: Application to the Electronic Structure of NiO

    Full text link
    The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground state of NiO and its optical properties. The electronic and optical properties have been investigated as a function of the Coulomb repulsion parameter U. We find that the value obtained from constrained LDA (U=8 eV) is not the best possible choice, whereas an intermediate value (U=5 eV) reproduces the experimental magnetic moment and optical properties satisfactorily. At intermediate U, the nature of the band gap is a mixture of charge transfer and Mott-Hubbard type, and becomes almost purely of the charge-transfer type at higher values of U. This is due to the enhancement of the oxygen 2p states near the top of the valence states with increasing U value.Comment: 23 pages, 6 figures, submitted to Phys. Rev.

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems

    Full text link
    Local-spin-density functional calculations may be affected by severe errors when applied to the study of magnetic and strongly-correlated materials. Some of these faults can be traced back to the presence of the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approximating the self-interaction corrected potential with a non-local, pseudopotential-like projector, first generated within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically improves the LSDA results for a variety of compounds with a minimal increase of computing cost.Comment: 18 pages, 14 figure

    Magnetic Moment Collapse-Driven Mott Transition in MnO

    Full text link
    The metal-insulator transition in correlated electron systems, where electron states transform from itinerant to localized, has been one of the central themes of condensed matter physics for more than half a century. The persistence of this question has been a consequence both of the intricacy of the fundamental issues and the growing recognition of the complexities that arise in real materials, even when strong repulsive interactions play the primary role. The initial concept of Mott was based on the relative importance of kinetic hopping (measured by the bandwidth) and on-site repulsion of electrons. Real materials, however, have many additional degrees of freedom that, as is recently attracting note, give rise to a rich variety of scenarios for a ``Mott transition.'' Here we report results for the classic correlated insulator MnO which reproduce a simultaneous moment collapse, volume collapse, and metallization transition near the observed pressure, and identify the mechanism as collapse of the magnetic moment due to increase of crystal field splitting, rather than to variation in the bandwidth.Comment: 18 pages, 5 figur
    corecore