1,022 research outputs found

    Helicobacter Genotyping and Detection in Peroperative Lavage Fluid in Patients with Perforated Peptic Ulcer

    Get PDF
    Introduction and Objectives Certain Helicobacter pylori genotypes are associated with peptic ulcer disease; however, little is known about associations between the H. pylori genotype and perforated peptic ulcer (PPU). The primary aim of this study was to evaluate which genotypes are present in patients with PPU and which genotype is dominant in this population. The secondary aim was to study the possibility of determining the H. pylori status in a way other than by biopsy. Materials and Methods Serum samples, gastric tissue biopsies, lavage fluid, and fluid from the nasogastric tube were collec

    Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation.

    Get PDF
    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy

    Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs

    Get PDF
    Published June 14, 2013We describe a novel heterothallic species in Aspergillus section Fumigati, namely A. felis (neosartorya-morph) isolated from three host species with invasive aspergillosis including a human patient with chronic invasive pulmonary aspergillosis, domestic cats with invasive fungal rhinosinusitis and a dog with disseminated invasive aspergillosis. Disease in all host species was often refractory to aggressive antifungal therapeutic regimens. Four other human isolates previously reported as A. viridinutans were identified as A. felis on comparative sequence analysis of the partial β-tubulin and/or calmodulin genes. A. felis is a heterothallic mold with a fully functioning reproductive cycle, as confirmed by mating-type analysis, induction of teleomorphs within 7 to 10 days in vitro and ascospore germination. Phenotypic analyses show that A. felis can be distinguished from the related species A. viridinutans by its ability to grow at 45°C and from A. fumigatus by its inability to grow at 50°C. Itraconazole and voriconazole cross-resistance was common in vitro.Vanessa R. Barrs, Tineke M. van Doorn, Jos Houbraken, Sarah E. Kidd, Patricia Martin, Maria Dolores Pinheiro, Malcolm Richardson, Janos Varga, Robert A. Samso

    Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials

    Full text link
    The two-body random ensemble (TBRE) for a many-body bosonic theory is mapped to a problem of random polynomials on the unit interval. In this way one can understand the predominance of 0+ ground states, and analytic expressions can be derived for distributions of lowest eigenvalues, energy gaps, density of states and so forth. Recently studied nuclear spectroscopic properties are addressed.Comment: 8 pages, 4 figures. To appear in Physical Review Letter

    The Unique Origin of Colors of Armchair Carbon Nanotubes

    Full text link
    The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure

    Electronic Devices Based on Purified Carbon Nanotubes Grown By High Pressure Decomposition of Carbon Monoxide

    Full text link
    The excellent properties of transistors, wires, and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems. Gas-phase growth procedures such as the high pressure decomposition of carbon monoxide (HiPCO) method yield large quantities of small diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade properties of SWNT devices. Here we demonstrate a purification, deposition, and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.Comment: 6 pages, 4 figures, to appear in Nature Material

    Parton Equilibration in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate the processes leading to phase-space equilibration of parton distributions in nuclear interactions at collider energies. We derive a set of rate equations describing the chemical equilibration of gluons and quarks including medium effects on the relevant QCD transport coefficients, and discuss their consequences for parton equilibration in heavy ion collisions.Comment: 18 pages, 6 Figures appended as uuencoded PostScript files, (no changes in the previously submitted manuscript), DUKE-TH-93-4

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe

    Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells

    Get PDF
    Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
    corecore