117 research outputs found

    Three-dimensional N=4 supersymmetry in harmonic N=3 superspace

    Full text link
    We consider the map of three-dimensional N=4 superfields to N=3 harmonic superspace. The left and right representations of the N=4 superconformal group are constructed on N=3 analytic superfields. These representations are convenient for the description of N=4 superconformal couplings of the Abelian gauge superfields with hypermultiplets. We analyze the N=4 invariance in the non-Abelian N=3 Yang-Mills theory.Comment: Latex file, 22 pages; v2 two references adde

    Constrained superpotentials in harmonic gauge theories with 8 supercharges

    Get PDF
    We consider D-dimensional supersymmetric gauge theories with 8 supercharges (D<6, N=8~\mathcal{N}=8) in the framework of harmonic superspaces. The effective Abelian low-energy action for D=5 contains the free and Chern-Simons terms. Effective N=8\mathcal{N}=8 superfield actions for D<4 can be written in terms of the superpotentials satisfying the superfield constraints and (6-D)-dimensional Laplace equations. The role of alternative harmonic structures is discussed.Comment: LATEX file, 9 pages, version published in Teor. Mat. Fi

    Quantum N=3, d=3 Chern-Simons Matter Theories in Harmonic Superspace

    Full text link
    We develop the background field method for studying classical and quantum aspects of N=3, d=3 Chern-Simons and matter theories in N=3 harmonic superspace. As one of the immediate consequences, we prove a nonrenormalization theorem implying the ultra-violet finiteness of the corresponding supergraph perturbation theory. We also derive the general hypermultiplet and gauge superfield propagators in a Chern-Simons background. The leading supergraphs with two and four external lines are evaluated. In contrast to the non-supersymmetric theory, the leading quantum correction to the massive charged hypermultiplet proves to be the super Yang-Mills action rather than the Chern-Simons one. The hypermultiplet mass is induced by a constant triplet of central charges in the N=3, d=3 Poincare superalgebra.Comment: 1+37 pages, 3 figures; v2: a reference added, to appear in JHE

    Unifying the PST and the auxiliary tensor field formulations of 4D self-duality

    Get PDF
    We unify the Lorentz- and O(2) duality-covariant approach to 4D self-dual theories by Pasti, Sorokin and Tonin (PST) with the formulation involving an auxiliary tensor field. We present the basic features of the new hybrid approach, including symmetries of the relevant generalized PST action. Its salient peculiarity is the unique form of the realization of the PST gauge symmetries. The corresponding transformations do not affect the auxiliary tensor field, which guarantees the self-duality of the nonlinear actions in which the O(2) invariant interactions are constructed out of the tensor field.Comment: 0 + 12 pages, typos corrected; published versio

    Chern-Simons theory in the SO(5)/U(2) harmonic superspace

    Full text link
    We consider the superspace of D=3, N=5 supersymmetry using SO(5)/U(2) harmonic coordinates. Three analytic N=5 gauge superfields depend on three vector and six harmonic bosonic coordinates and also on six Grassmann coordinates. Decomposition of these superfields in Grassmann and harmonic coordinates yields infinite-dimensional supermultiplets including a three-dimensional gauge Chern-Simons field and auxiliary bosonic and fermionic fields carrying SO(5) vector indices. The superfield action of this theory is invariant with respect to D=3, N=6 conformal supersymmetry realized on N=5 superfields.Comment: Latex file, 17 pages, v2 with minor changes, v3 journal versio

    Superspace Formulation in a Three-Algebra Approach to D=3, N=4,5 Superconformal Chern-Simons Matter Theories

    Full text link
    We present a superspace formulation of the D=3, N=4,5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action, and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new super-potential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4,5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be rederived in our 3-algebra approach. All known N=4,5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie-algebra realization of symplectic 3-algebras.Comment: 37 pages, minor changes, published in PR

    Reality in Noncommutative Gravity

    Full text link
    We study the problem of reality in the geometric formalism of the 4D noncommutative gravity using the known deformation of the diffeomorphism group induced by the twist operator with the constant deformation parameters \vt^{mn}. It is shown that real covariant derivatives can be constructed via \star-anticommutators of the real connection with the corresponding fields. The minimal noncommutative generalization of the real Riemann tensor contains only \vt^{mn}-corrections of the even degrees in comparison with the undeformed tensor. The gauge field hmnh_{mn} describes a gravitational field on the flat background. All geometric objects are constructed as the perturbation series using \star-polynomial decomposition in terms of hmnh_{mn}. We consider the nonminimal tensor and scalar functions of hmnh_{mn} of the odd degrees in \vt^{mn} and remark that these pure noncommutative objects can be used in the noncommutative gravity.Comment: Latex file, 14 pages, corrected version to be publised in CQ

    ABJM models in N=3 harmonic superspace

    Full text link
    We construct the classical action of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model in the N=3, d=3 harmonic superspace. In such a formulation three out of six supersymmetries are realized off shell while the other three mix the superfields and close on shell. The superfield action involves two hypermultiplet superfields in the bifundamental representation of the gauge group and two Chern-Simons gauge superfields corresponding to the left and right gauge groups. The N=3 superconformal invariance allows only for a minimal gauge interaction of the hypermultiplets. Amazingly, the correct sextic scalar potential of ABJM emerges after the elimination of auxiliary fields. Besides the original U(N)xU(N) ABJM model, we also construct N=3 superfield formulations of some generalizations. For the SU(2)xSU(2) case we give a simple superfield proof of its enhanced N=8 supersymmetry and SO(8) R-symmetry.Comment: 1+35 pages, minor changes, a reference added, published versio
    corecore