263 research outputs found

    Linear systems theory and its relationship to ocean acoustics

    Get PDF
    The article of record as published may be found at https://doi: 10.1121/1.2028979The purpose of this talk is to demonstrate the consistency and relationships between linear systems theory and the physics of propagation of smallā€amplitude acoustic signals in fluid media. Using the principles of linear, timeā€variant, spaceā€variant filter theory and timeā€domain and spatialā€domain Fourier transforms, derivations of the solutions of the linear, threeā€dimensional, inhomogeneous wave equation for (1) an unbounded isospeed fluid medium, (2) and unbounded fluid medium with speed of sound an arbitrary function of depth, and (3) a fullā€wave, pulseā€propagation model for threeā€dimensional wave propagation in a Pekeris waveguide are presented. Characterizing a fluid medium as a linear filter is valid since this involves trying to solve the linear wave equation. Computer simulation results are presented.Work supported by ONR, Code1 1250 and the Naval Postgraduate Schoo

    Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging

    Get PDF
    The mechanism by which Cu catalyst pretreatments control graphene nucleation density in scalable chemical vapor deposition (CVD) is systematically explored. The intrinsic and extrinsic carbon contamination in the Cu foil is identified by time-of-flight secondary ion mass spectrometry as a major factor influencing graphene nucleation and growth. By selectively oxidizing the backside of the Cu foil prior to graphene growth, a drastic reduction of the graphene nucleation density by 6 orders of magnitude can be obtained. This approach decouples surface roughness effects and at the same time allows us to trace the scavenging effect of oxygen on deleterious carbon impurities as it permeates through the Cu bulk. Parallels to well-known processes in Cu metallurgy are discussed. We also put into context the relative effectiveness and underlying mechanisms of the most widely used Cu pretreatments, including wet etching and electropolishing, allowing a rationalization of current literature and determination of the relevant parameter space for graphene growth. Taking into account the wider CVD growth parameter space, guidelines are discussed for high-throughput manufacturing of "electronic-quality" monolayer graphene films with domain size exceeding 1 mm, suitable for emerging industrial applications, such as electronics and photonics.This research was supported by the ERC under grant InsituNANO (279342), the EPSRC under grant GRAPHTED (EP/K016636/1), and the Innovation R&D programme of the National Measurement System of the U.K. Department of Business, Innovation and Skills (project number 118616)
    • ā€¦
    corecore