349 research outputs found

    Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    Get PDF
    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the FXFX curves for spherical virus particles --- CCMV, TrV, and AdV

    Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013

    Get PDF
    We use repeat-pass SAR data to produce detailed maps of surface motion covering the glaciers draining into the former Larsen B ice shelf, Antarctic Peninsula, for different epochs between 1995 and 2013. We combine the velocity maps with estimates of ice thickness to analyze fluctuations of ice discharge. The collapse of the central and northern sections of the ice shelf in 2002 led to a near-immediate acceleration of tributary glaciers as well as of the remnant ice shelf in Scar Inlet. Velocities of the glaciers discharging directly into the ocean remain to date well above the velocities of the pre-collapse period. The response of individual glaciers differs and velocities show significant temporal fluctuations, implying major variations in ice discharge and mass balance as well. Due to reduced velocity and ice thickness the ice discharge of Crane Glacier decreased from 5.02 Gt a−1 in 2007 to 1.72 Gt a−1 in 2013, whereas Hektoria and Green glaciers continue to show large temporal fluctuations in response to successive stages of frontal retreat. The velocity on Scar Inlet ice shelf increased two- to three fold since 1995, with the largest increase in the first years after the break-up of the main section of Larsen B. Flask and Leppard glaciers, the largest tributaries to Scar Inlet ice shelf, accelerated. In 2013 their discharge was 38% and 46%, higher than in 1995

    A single point mutation in precursor protein VI doubles the mechanical strength of human adenovirus

    Get PDF
    Viruses are extensively studied as vectors for vaccine applications and gene therapies. For these applications, understanding the material properties of viruses is crucial for creating optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and compared it to viral capsids with a single point mutation in the protein VI precursor protein (pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35 capsids. We suggest that this major increase in strength is the result of the DNA crosslinking activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids. The infectivity was similar for both capsids, indicating that mutation did not affect the ability of protein VI to lyse the endosomal membrane. This study highlights that it is possible to increase the mechanical stability of a capsid even with a single point mutation while not affecting the viral life cycle. Such insight can help enable the development of more stable vectors for therapeutic applications

    Acetylation and phosphorylation of human TFAM regulate TFAM-DNA interactions via contrasting mechanisms

    Get PDF
    Mitochondrial transcription factor A (TFAM) is essential for the maintenance, expression and transmission of mitochondrial DNA (mtDNA). However, mechanisms for the post-translational regulation of TFAM are poorly understood. Here, we show that TFAM is lysine acetylated within its high-mobility-group box 1, a domain that can also be serine phosphorylated. Using bulk and single-molecule methods, we demonstrate that site-specific phosphoserine and acetyllysine mimics of human TFAM regulate its interaction with non-specific DNA through distinct kinetic pathways. We show that higher protein concentrations of both TFAM mimics are required to compact DNA to a similar extent as the wild-type. Compaction is thought to be crucial for regulating mtDNA segregation and expression. Moreover, we reveal that the reduced DNA binding affinity of the acetyl-lysine mimic arises from a lower on-rate, whereas the phosphoserine mimic displays both a decreased on-rate and an increased off-rate. Strikingly, the increased off-rate of the phosphoserine mimic is coupled to a significantly faster diffusion of TFAM on DNA. These findings indicate that acetylation and phosphorylation of TFAM can fine-tune TFAM-DNA binding affinity, to permit the discrete regulation of mtDNA dynamics. Furthermore, our results suggest that phosphorylation could additionally regulate transcription by altering the ability of TFAM to locate promoter sites

    Theory of biopolymer stretching at high forces

    Full text link
    We provide a unified theory for the high force elasticity of biopolymers solely in terms of the persistence length, ξp\xi_p, and the monomer spacing, aa. When the force f>\fh \sim k_BT\xi_p/a^2 the biopolymers behave as Freely Jointed Chains (FJCs) while in the range \fl \sim k_BT/\xi_p < f < \fh the Worm-like Chain (WLC) is a better model. We show that ξp\xi_p can be estimated from the force extension curve (FEC) at the extension x1/2x\approx 1/2 (normalized by the contour length of the biopolymer). After validating the theory using simulations, we provide a quantitative analysis of the FECs for a diverse set of biopolymers (dsDNA, ssRNA, ssDNA, polysaccharides, and unstructured PEVK domain of titin) for x1/2x \ge 1/2. The success of a specific polymer model (FJC or WLC) to describe the FEC of a given biopolymer is naturally explained by the theory. Only by probing the response of biopolymers over a wide range of forces can the ff-dependent elasticity be fully described.Comment: 20 pages, 4 figure

    Repeat Subglacial Lake Drainage and Filling beneath Thwaites Glacier

    Get PDF
    Active subglacial lakes have been identified throughout Antarctica, offering a window into subglacial environments and their impact on ice sheet mass balance. Here we use high‐resolution altimetry measurements from 2010 to 2019 to show that a lake system under the Thwaites glacier undertook a large episode of activity in 2017, only four years after the system underwent a substantial drainage event. Our observations suggest significant modifications of the drainage system between the two events, with 2017 experiencing greater upstream discharge, faster lake‐to‐lake connectivity, and the transfer of water within a closed system. Measured rates of lake recharge during the inter‐drainage period are 137% larger than modelled estimates, suggesting processes that drive subglacial meltwater production, such as geothermal heat flux or basal friction, are currently underestimated

    Physics of viral dynamics

    Get PDF
    Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt
    corecore