11 research outputs found

    Involvement of PPAR-Îł in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR Îł). PPAR-Îł activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions.</p> <p>Methods</p> <p>We have investigated whether oral treatment with telmisartan (the most potent PPAR-Îł activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-Îł activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-Îł antagonist GW9662 to study the role of PPAR-Îł activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-Îł activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-Îł antagonist GW9662.</p> <p>Results</p> <p>We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.</p> <p>Conclusion</p> <p>The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-Îł activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-Îł activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.</p

    Reactive oxygen species and vascular biology: implications in human hypertension

    No full text
    Increased vascular production of reactive oxygen species (ROS; termed oxidative stress) has been implicated in various chronic diseases, including hypertension. Oxidative stress is both a cause and a consequence of hypertension. Although oxidative injury may not be the sole etiology, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors. Oxidative stress is a multisystem phenomenon in hypertension and involves the heart, kidneys, nervous system, vessels and possibly the immune system. Compelling experimental and clinical evidence indicates the importance of the vasculature in the pathophysiology of hypertension and as such much emphasis has been placed on the (patho)biology of ROS in the vascular system. A major source for cardiovascular, renal and neural ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), including the prototypic Nox2 homolog-based NADPH oxidase, as well as other Noxes, such as Nox1 and Nox4. Nox-derived ROS is important in regulating endothelial function and vascular tone. Oxidative stress is implicated in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis and rarefaction, important processes involved in vascular remodeling in hypertension. Despite a plethora of data implicating oxidative stress as a causative factor in experimental hypertension, findings in human hypertension are less conclusive. This review highlights the importance of ROS in vascular biology and focuses on the potential role of oxidative stress in human hypertension

    Reactive oxygen species, vascular disease, and hypertension

    No full text
    Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS bioavailability and altered redox signaling (oxidative stress) have been implicated in chronic diseases including atherosclerosis and hypertension. Although oxidative injury may not be the sole etiology of hypertension, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors, such as salt loading, activation of the renin-angiotensin system, and sympathetic hyperactivity. Oxidative stress is a multisystem phenomenon in hypertension and involves the heart, kidneys, nervous system, and vessels. A major source for cardiovascular, renal, and neural ROS is a family of non-phagocytic NADPH oxidases, including the prototypic Nox2 homologue-based NADPH oxidase, as well as other NADPH oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase (NOS). Cross talk between Noxes and mitochondrial oxidases is increasingly implicated in cellular ROS production. Convincing findings from experimental and animal studies support a causative role for oxidative stress in the pathogenesis of hypertension. However, there is still no solid evidence that oxidative stress is fundamentally involved in the pathogenesis of human hypertension. Reasons for this are complex and relate to heterogeneity of populations studied, inappropriate or insensitive methodologies to evaluate oxidative state clinically, and suboptimal antioxidant therapies used. Nevertheless, what is becoming increasingly evident is that oxidative stress is important in the molecular mechanisms associated with cardiovascular and renal injury in hypertension and that hypertension itself can contribute to oxidative stress. This chapter provides a comprehensive review of the role of ROS in the (patho)physiology of vascular injury and discusses the importance of Noxes in vascular oxidative stress. Implications in experimental and human hypertension are highlighted
    corecore