30 research outputs found

    Epstein-Barr Virus genome deletions in Epstein-Barr Virus-positive T/NK cell lymphoproliferative diseases

    Get PDF
    The main target cells for Epstein-Barr virus (EBV) infection and persistence are B lymphocytes, although T and NK cells can also become infected. In this paper, we characterize the EBV present in 21 pediatric and adult patients who were treated in France for a range of diseases that involve infection of T or NK cells. Of these 21 cases, 5 pediatric patients (21%) and 11 adult patients (52%) were of Caucasian origin. In about 30% of the cases, some of the EBV genomes contain a large deletion. The deletions are different in every patient but tend to cluster near the BART region of the viral genome. Detailed investigation of a family in which several members have persistent T or NK cell infection by EBV indicates that the virus genome deletions arise or are selected independently in each individual patient. Genome sequence polymorphisms in the EBV in these T or NK cell diseases reflect the geographic origin of the patient and not a distinct type of EBV (the 21 cases studied included examples of both type 1 and type 2 EBV infection). Using virus produced from type 1 or type 2 EBV genomes cloned in bacterial artificial chromosome (BAC) vectors, we demonstrate infection of T cells in cord blood from healthy donors. Our results are consistent with transient infection of some T cells being part of normal asymptomatic infection by EBV in young children. IMPORTANCE EBV contributes to several types of human cancer. Some cancers and nonmalignant lymphoproliferative diseases involving T or NK cells contain EBV. These diseases are relatively frequent in Japan and China and have been shown sometimes to have deletions in the EBV genome in the disease cells. We identify further examples of deletions within the EBV genome associated with T or NK cell diseases, and we provide evidence that the virus genomes with these deletions are most likely selected in the individual cases, rather than being transmitted between people during infection. We demonstrate EBV infection of cord blood T cells by highly characterized, cloned EBV genomes and suggest that transient infection of T cells may be part of normal asymptomatic infection by EBV in young children

    Comparison of properties of joints prepared by ultrasonic welding and other means

    No full text

    Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope

    Get PDF
    A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic “breathing” of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We have engineered E dimers locked by inter-subunit disulphide bonds, and show here by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccin

    Caffeine metabolism by human hepatic cytochromes p450: Contributions of 1A2, 2E1 and 3A isoforms

    No full text
    Caffeine (CA) N1-, N3- and N7-demethylase, CA 8-hydroxylase and phenacetin O-deethylase activities were measured in microsomes from 18 separate human livers which had been characterized previously for a range of cytochrome P450 (CYP) isoform-specific activities and immunoreactive CYP protein contents. Correlations between the high affinity components of the three separate CA N-demethylations were highly significant (r = 0.77-0.91, P < 0.001) and each of the three high affinity CA N-demethylations correlated significantly (r = 0.64-0.93, P < 0.05-0.001) with the high affinity phenacetin O-deethylase, 2-acetylaminofluorene N-hydroxylation and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) mutagenicity (all predominantly CYP1A2-mediated reactions). Consistent with these observations, cDNA-expressed human CYP1A2 catalyzed the N1-, N3- and N7-demethylation of CA and apparent K values were similar (0.24-0.28 mM) for all three reactions and comparable to those observed previously with human liver microsomes. The low affinity components of CA N1- and N7-demethylation correlated significantly (r = 0.55-0.85, P < 0.05-0.001) with immunoreactive CYP2E1 content and the CYP2E1-specific activities 4-nitrophenol and chlorzoxazone hydroxylation. Diethyldithiocarbamate, a selective inhibitor of CYP2E1, inhibited the low affinity CA N1- and N7-demethylation, with IC values of 23 ΌM and 11 ΌM, respectively. The apparent K values for CA N1- and N7-demethylation by cDNA-expressed CYP2E1 (namely 28 and 43 mM, respectively) were of a similar order to those calculated for the low affinity microsomal activities. Significant correlations (r = 0.87-0.97, P < 0.001) were observed between CA 8-hydroxylation and immunoreactive CYP3A content and the CYP3A-mediated reactions benzo(a)pyrene hydroxylation, omeprazole sulfoxidation and aflatoxin B1 mutagenesis. Effects of α-naphthoflavone, erythromycin, troleandomycin and nifedipine on microsomal CA 8-hydroxylation were generally consistent with CYP3A involvement. Taken together with previous data, the results indicate a major involvement of CYP1A2 in the high affinity component of all three human hepatic CA N-demethylations. In contrast, CYP2E1 appears to be the main enzyme involved in the low affinity components of CA N1- and N7-demethylation while CA 8-hydroxylation is catalysed predominantly by a CYP3A isoform(s)

    Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity.

    No full text
    Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries, underlying the need for a dengue vaccine. Although it is relatively easy to generate Ab responses to dengue virus, low avidity or low concentrations of Ab may enhance infection of FcR-bearing cells with clinical impact, posing a challenge to vaccine production. In this article, we report the characterization of a mAb, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. Because the 2H12-binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for Ab binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding Ab neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines

    A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection

    No full text
    Infections with dengue (DENV) and Zika (ZIKV) viruses can induce cross-reactive antibody responses. Two immunodominant epitopes, to precursor membrane protein (prM) or the fusion loop epitope (FLE) on envelope (E) protein are recognized by cross-reactive antibodies1, 2, 3 that are not only poorly neutralizing, but can also promote increased viral replication and disease seerity via Fc-gamma receptor mediated infection of myeloid cells, a process termed antibody-dependent enhancement (ADE)1, 4, 5 . ADE is a significant concern for both ZIKV and DENV vaccines as the induction of poorly-neutralizing cross-reactive antibodies may prime an individual for ADE upon natural infection. In this report, we describe the design and production of covalently-stabilized ZIKV E-dimers, which lack prM and do not expose the immunodominant FLE. Immunization of mice with ZIKV E-dimers induces dimer-specific antibodies, which protected against ZIKV challenge during pregnancy. Importantly, the ZIKV E-dimer-induced response does not cross-react with DENV or induce ADE of DENV infection

    Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus

    No full text
    Dengue virus is a major pathogen and severe infections can lead to life threatening dengue hemorrhagic fever (DHF). Dengue exists as four serotypes and DHF is often associated with secondary heterologous infections. Antibody dependent enhancement (ADE) may drive higher virus loads in these secondary infections, and is purported to result from antibodies that recognize dengue but fail to fully neutralize. We have characterized two antibodies, 2C8 and 3H5, which bind to the envelope protein. 3H5 is highly unusual as it is both potently neutralizing, but promotes little if any ADE, whereas 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immune complexes of 3H5 and dengue virus do not efficiently interact with FcÎł receptors, which we propose is due to the binding mode of 3H5 and which constitutes the primary mechanism of how ADE is avoided
    corecore