14 research outputs found
Mutations in the COL1A1 and COL1A2 genes associated with osteogenesis imperfecta (OI) types I or III
Although over 85% of osteogenesis imperfecta (OI) cases are associated with mutations in the procollagen type I genes (COL1A1 or COL1A2), no hot spots for the mutations were associated with particular clinical phenotypes. Eight patients that were studied here, diagnosed with OI by clinical standards, are from the Polish population with no ethnic background indicated. Previously unpublished mutations were found in six out of those eight patients. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were determined. Mutations were found in exons 2, 22, 50 and in introns 13 and 51 of the COL1A1 gene. In COL1A2, one mutation was identified in exon 22. Deletion type mutations in COL1A1 that resulted in OI type I had no effect on collagen type I secretion, nor on its intracellular accumulation. Also, a single base substitution in I13 (c.904-9 G>T) was associated with the OI type I. The OI type III was associated with a single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly→Cys in the central part of the triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of the heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation into procollagen type I. The results obtained shall help in genetic counseling of OI patients and provide a rational support for making informed, life important decisions by them and their families
Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland
Introduction. Ticks (Acari: Ixodida) are vectors and/or reservoirs of many pathogens, i.e. Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti. These pathogens are ethiological agents of such diseases as Lyme borreliosis, human granulocytic anaplasmosis and human babesiosis.
Objective. The aim of the study was to evaluate the role of the Ixodes ricinus in the transmission of Borrelia burgdorferi sensu lato, Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto, Anaplasma phagocytophilum and Babesia microti in Opolskie Province in Poland.
Materials and method. DNA from 222 ticks was isolated by the ammonia method. The pair of primers specific to the flagelline gene was used to detect of B. burgdorferi s. l. To detect of genospecies of this spirochete, three pairs of internal primers were used. In turn, two pairs of primers specific to the 16S rDNA gene and the 18S rRNA were used, respectively, for the detection of A. phagocytophilum and B. microti. Borrelia burgdorferi s. l., A. phagocytophilum, and B. microti were detected in 4.5%, 2.7% and 5.4% of examined ticks, respectively.
Results and conclusions. Of the ten ticks infected with B. burgdorferi s. l., B. afzelii was found in seven, undefinied genospecies in two, and mixed infection with B. afzelii and B. burgdorferi s. s. in one. The study demonstrated the potential risk of exposure of humans and animals to infections of B. burgdorferi s. l., A. phagocytophilum and B. microti in the examined area of Poland
Mutations in COL1A1 and COL1A2 Genes Associated with Osteogenesis Imperfecta (OI) Types I or III.
Although over 85% of osteogenesis imperfecta (OI) cases are associated with mutations in the procollagen type I genes (COL1A1 or COL1A2), no hot spots for the mutations were associated with particular clinical phenotypes. Eight patients that were studied here, diagnosed with OI by clinical standards, are from the Polish population with no ethnic background indicated. Previously unpublished mutations were found in six out of those eight patients. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were determined. Mutations were found in exons 2, 22, 50 and in introns 13 and 51 of the COL1A1 gene. In COL1A2, one mutation was identified in exon 22. Deletion type mutations in COL1A1 that resulted in OI type I had no effect on collagen type I secretion, nor on its intracellular accumulation. Also, a single base substitution in I13 (c.904-9 G>T) was associated with the OI type I. The OI type III was associated with a single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly→Cys in the central part of the triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of the heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation into procollagen type I. The results obtained shall help in genetic counseling of OI patients and provide a rational support for making informed, life important decisions by them and their families
Telomere Length in Elderly Caucasians Weakly Correlates with Blood Cell Counts
Background. Age-related decrease in bone marrow erythropoietic capacity is often accompanied by the telomere length shortening in peripheral white blood cells. However, limited and conflicting data hamper the conclusive opinion regarding this relationship. Therefore, the aim of this study was to assess an association between telomere length and peripheral blood cell count parameters in the Polish elderly population. Material and Methods. The substudy included 1573 of 4981 subjects aged 65 years or over, participants of the population-based PolSenior study. High-molecular-weight DNA was isolated from blood mononuclear cells. Telomere length (TL) was measured by QRT-PCR as abundance of telomere template versus a single gene copy encoding acidic ribosomal phosphoprotein P0. Results. Only white blood count (WBC) was significantly different in TL tertile subgroups in all subjects ( = 0.02) and in men ( = 0.01), but not in women. Merely in men significant but weak positive correlations were found between TL and WBC ( = 0.11, < 0.05) and RBC ( = 0.08, < 0.05). The multiple regression analysis models confirmed a weak, independent contribution of TL to both RBC and WBC. Conclusions. In the elderly, telomere shortening limits hematopoiesis capacity to a very limited extent