33 research outputs found

    On Growth, Disorder, and Field Theory

    Full text link
    This article reviews recent developments in statistical field theory far from equilibrium. It focuses on the Kardar-Parisi-Zhang equation of stochastic surface growth and its mathematical relatives, namely the stochastic Burgers equation in fluid mechanics and directed polymers in a medium with quenched disorder. At strong stochastic driving -- or at strong disorder, respectively -- these systems develop nonperturbative scale-invariance. Presumably exact values of the scaling exponents follow from a self-consistent asymptotic theory. This theory is based on the concept of an operator product expansion formed by the local scaling fields. The key difference to standard Lagrangian field theory is the appearance of a dangerous irrelevant coupling constant generating dynamical anomalies in the continuum limit.Comment: review article, 50 pages (latex), 10 figures (eps), minor modification of original versio

    Predicting Cell Cycle Regulated Genes by Causal Interactions

    Get PDF
    The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e.g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first

    Hierarchical coordination of periodic genes in the cell cycle of Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene networks are a representation of molecular interactions among genes or products thereof and, hence, are forming causal networks. Despite intense studies during the last years most investigations focus so far on inferential methods to reconstruct gene networks from experimental data or on their structural properties, e.g., degree distributions. Their structural analysis to gain functional insights into organizational principles of, e.g., pathways remains so far under appreciated.</p> <p>Results</p> <p>In the present paper we analyze cell cycle regulated genes in <it>S. cerevisiae</it>. Our analysis is based on the transcriptional regulatory network, representing causal interactions and not just associations or correlations between genes, and a list of known periodic genes. No further data are used. Partitioning the transcriptional regulatory network according to a graph theoretical property leads to a hierarchy in the network and, hence, in the information flow allowing to identify two groups of periodic genes. This reveals a novel conceptual interpretation of the working mechanism of the cell cycle and the genes regulated by this pathway.</p> <p>Conclusion</p> <p>Aside from the obtained results for the cell cycle of yeast our approach could be exemplary for the analysis of general pathways by exploiting the rich causal structure of inferred and/or curated gene networks including protein or signaling networks.</p

    PM techniques for making near-net-shape titanium alloy components

    No full text

    Hochwertige Verschleißschutzwerkstoffe

    No full text

    Sulcal morphology of posteromedial cortex substantially differs between humans and chimpanzees

    No full text
    Abstract Recent studies identify a surprising coupling between evolutionarily new sulci and the functional organization of human posteromedial cortex (PMC). Yet, no study has compared this modern PMC sulcal patterning between humans and non-human hominoids. To fill this gap in knowledge, we first manually defined over 2500 PMC sulci in 120 chimpanzee (Pan Troglodytes) hemispheres and 144 human hemispheres. We uncovered four new sulci, and quantitatively identified species differences in sulcal incidence, depth, and surface area. Interestingly, some sulci are more common in humans and others, in chimpanzees. Further, we found that the prominent marginal ramus of the cingulate sulcus differs significantly between species. Contrary to classic observations, the present results reveal that the surface anatomy of PMC substantially differs between humans and chimpanzees—findings which lay a foundation for better understanding the evolution of neuroanatomical-functional and neuroanatomical-behavioral relationships in this highly expanded region of the human cerebral cortex
    corecore