3,806 research outputs found

    Arc spray fabrication of metal matrix composite monotape

    Get PDF
    Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape

    Method of making single crystal fibers

    Get PDF
    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion

    Floating zone process for drawing small diameter fibers of refractory materials

    Get PDF
    New process produces controlled purity, very high strength, single crystal fibers of materials with melting points to 4000 C. Process has been used to make single crystal fibers of highly refractory ceramics such as aluminum oxide, titanium carbide and yttrium oxide

    Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades

    Get PDF
    Tungsten fiber reinforced superalloy composite (TFRS) impingement cooled turbine blade inlet gas temperatures were calculated taking into account material spanwise strength, thermal conductivity, material oxidation resistance, fiber-matrix interaction, and coolant flow. Measured values of TFRS thermal conductivities are presented. Calculations indicate that blades made of 30 volume percent fiber content TFRS having a 12,000 N-m/kg stress-to-density ratio while operating at 40 atmospheres and a 0.06 coolant flow ratio could permit a turbine blade inlet gas temperature of over 1900K. This is more than 150K greater than similar superalloy blades

    Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    Get PDF
    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling

    Thermal-conductivity measurements of tungsten-fiber-reinforced superalloy composites using a thermal-conductivity comparator

    Get PDF
    The thermal conductivity (TC) of tungsten-fiber-reinforced superalloys was determined for two composite systems by using a thermal conductivity standard from the National Bureau of Standards and a comparator and technique developed for that purpose. The results were compared with TC data for the nickel-base alloy MAR-M200. The technique lends itself to applications involving thin specimens, such as thin-walled turbine blades. The TC's of the composite systems were considerably higher in both the longitudinal and transverse directions than that of the monolithic superalloys used as the matrices

    Traces of Thermalization at RHIC

    Full text link
    I argue that measurements of Au+Au collisions at 20, 130 and 200 GeV of the centrality dependence of the mean p_t together with p_t and net-charge fluctuations reflect the approach to local thermal equilibrium.Comment: 4 pages, 4 eps figures, for proc. Quark Matter 2004, to be published in J. Phys.

    Small high-temperature nuclear reactors for space power

    Get PDF
    Criticality calculations for small, cylindrical, lithium cooled reactors for space power system

    Attitude Control System Design for CubeSats Configured with Exo-Brake Parachute

    Get PDF
    This paper develops a novel attitude control strategy for an Earth orbiting CubeSat spacecraft by utilizing the exo-brake parachute to modulate the atmospheric drag forces as a source of attitude control authority, enabling orbital exo-sail maneuvers. In particular, the spacecraft attitude controls can be realized through the two dimensional exo-sail maneuvers in pitch and yaw directions. The uncertain atmospheric drag induced disturbance torque is estimated through an adaptive parameter estimation process which makes use of the adaptive least-squares minimization techniques. The covariance updating law with a variable forgetting factor is adopted and it can be shown that the convergent rate for the estimation errors can be chosen at the same level as the forgetting factor, in order to meet the design needs. The proposed approach is best suited for Earth orbiting micronano-satellite applications, which are configured with exo-brake parachute. With integration of exo-sail actuation mechanism and disturbance estimation, we demonstrate through simulations that exo-sail induced control torque for CubeSat attitude maneuver is feasible
    corecore