65 research outputs found

    Evaluation of developmental neurotoxicity: some important issues focused on neurobehavioral development

    Get PDF
    Exposure of the developing organism to industrial chemicals and physical factors represents a serious risk factor for the development of neurobehavioral disorders, such as attention-deficit hyperactivity disorder, autism and mental retardation. Appropriate animal models are needed to test potentially harmful effects and mechanisms of developmental neurotoxicity of various chemical substances. However, there are significant human vs. rat differences in the brain developmental profile which should be taken into account in neurotoxicity studies. Subtle behavioral alterations are hard to detect by traditional developmental toxicity and teratogenicity studies, and in many cases they remain hidden. They can however be revealed by using special behavioral, endocrine and/or pharmacological challenges, such as repeated behavioral testing, exposure to single stressful stimulus or drugs. Further, current neurobehavioral test protocols recommend to test animals up to their adulthood. However some behavioral alterations, such as anxiety-like behavior or mental deficiency, may become manifest in later periods of development. Our experimental and scientific experiences are highly suggestive for a complex approach in testing potential developmental neurotoxicity. Strong emphasis should be given on repeated behavioral testing of animals up to senescence and on using proper pharmacological and/or stressful challenges

    The Effects of Breeding Protocol in C57BL/6J Mice on Adult Offspring Behaviour

    Get PDF
    Animal experiments have demonstrated that a wide range of prenatal exposures can impact on the behaviour of the offspring. However, there is a lack of evidence as to whether the duration of sire exposure could affect such outcomes. We compared two widely used methods for breeding offspring for behavioural studies. The first involved housing male and female C57Bl/6J mice together for a period of time (usually 10–12 days) and checking for pregnancy by the presence of a distended abdomen (Pair-housed; PH). The second involved daily introduction of female breeders to the male homecage followed by daily checks for pregnancy by the presence of vaginal plugs (Time-mated; TM). Male and female offspring were tested at 10 weeks of age on a behavioural test battery including the elevated plus-maze, hole board, light/dark emergence, forced swim test, novelty-suppressed feeding, active avoidance and extinction, tests for nociception and for prepulse inhibition (PPI) of the acoustic startle response. We found that length of sire exposure (LSE) had no significant effects on offspring behaviour, suggesting that the two breeding protocols do not differentially affect the behavioural outcomes of interest. The absence of LSE effects on the selected variables examined does not detract from the relevance of this study. Information regarding the potential influences of breeding protocol is not only absent from the literature, but also likely to be of particular interest to researchers studying the influence of prenatal manipulations on adult behaviour

    Spatial and visual performance and learning in mice.

    No full text

    Spatial and visual performance and learning in mice.

    No full text
    corecore