10,530 research outputs found
Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling
We investigate the low-energy scattering and bound states of two
two-component fermionic atoms in pure two-dimensional (2D) and quasi-2D
confinements with Rashba spin-orbit coupling (SOC). We find that the SOC
qualitatively changes the behavior of the 2D scattering amplitude in the
low-energy limit. For quasi-2D systems we obtain the analytic expression for
the effective-2D scattering amplitude and the algebraic equations for the
two-atom bound state energy. Based on these results, we further derive the
effective 2D interaction potential between two ultracold atoms in the quasi-2D
confinement with Rashba SOC. These results are crucial for the control of the
2D effective physics in quasi-2D geometry via the confinement intensity and the
atomic three-dimensional scattering length.Comment: 13pages, 5 figure
Micro-patterned graphene-based sensing skins for human physiological monitoring.
Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor's ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity
Recommended from our members
Printed Strain Sensors Using Graphene Nanosheets Prepared by Water-Assisted Liquid Phase Exfoliation
Urea Molasses Multi-Nutrient Block (UMMB) as a Feed Supplement: Effect on Reducing Liveweight Losses in Yaks During the Cold Season of Qinghai-Tibetan Plateau, China
Urea molasses multi-nutrient block (UMMB) has been widely used as a feed supplement to balance nutrition of ruminants fed low-quality forage-based diets in tropical and sub-tropical areas. This study was carried out to determine the effects of UMMB in reducing liveweight loss of both yak cows and calves grazing on low-quality pastures during winter on the Qinghai-Tibetan Plateau, China
Efficient Multi-Party Quantum Secret Sharing Schemes
In this work, we generalize the quantum secret sharing scheme of Hillary,
Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary
multi-parties. Explicit expressions for the shared secret bit is given. It is
shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme
the secret information is shared in the parity of binary strings formed by the
measured outcomes of the participants. In addition, we have increased the
efficiency of the quantum secret sharing scheme by generalizing two techniques
from quantum key distribution. The favored-measuring-basis Quantum secret
sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F.
Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their
measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum
secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y.
Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all
participants choose their measuring-basis according to a control key. Both
schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states
in a quantum secret sharing process are used to generate shared secret
information.Comment: 7 page
Stability of Excited Dressed States with Spin-Orbit Coupling
We study the decay behaviors of ultracold atoms in metastable states with
spin-orbit coupling (SOC), and demonstrate that there are two SOC-induced decay
mechanisms. One arises from the trapping potential and the other is due to
interatomic collision. We present general schemes for calculating decay rates
from these two mechanisms, and illustrate how the decay rates can be controlled
by experimental parameters.We experimentally measure the decay rates over a
broad parameter region, and the results agree well with theoretical
calculations. This work provides an insight for both quantum simulation
involving metastable dressed states and studies on few-body problems with SO
coupling.Comment: 4.5 pages, 4 figures, the latest versio
Phenotyping hypotensive patients in critical care using hospital discharge summaries
Among critically-ill patients, hypotension represents a failure in compensatory mechanisms and may lead to organ hypoperfusion and failure. In this work, we adopt a datadriven approach for phenotype discovery and visualization of patient similarity and cohort structure in the intensive care unit (ICU). We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically learn a d-dimensional feature representation of patients that captures the latent 'topic' structure of diseases, symptoms, medications, and findings documented in hospital discharge summaries. We then used the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to convert the d-dimensional latent structure learned from HDP into a matrix of pairwise similarities for visualizing patient similarity and cohort structure. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluated the clinical utility of the discovered topic structure in phenotyping critically-ill patients who experienced hypotensive episodes. Our results indicate that the approach is able to reveal clinically interpretable clustering structure within our cohort and may potentially provide valuable insights to better understand the association between disease phenotypes and outcomes.National Institutes of Health (U.S.) (Grant R01-EB017205)National Institutes of Health (U.S.) (Grant R01-EB001659)National Institutes of Health (U.S.) (Grant R01GM104987
- …