75 research outputs found

    DETC2005-84756 ON NUMERICAL SIMULATIONS OF A NONLINEAR SELF-EXCITED SYSTEM WITH TWO NON-IDEAL SOURCES

    Get PDF
    ABSTRACT In this work, the dynamic behavior of self-synchronization and synchronization through mechanical interactions between the nonlinear self-excited oscillating system and two non-ideal sources are examined by numerical simulations. The physical model of the system vibrating consists of a non-linear spring of Duffing type and a nonlinear damping described by Rayleigh's term. This system is additional forced by two unbalanced identical direct current motors with limited power (non-ideal excitations). The present work mathematically implements the parametric excitation described by two periodically changing stiffness of Mathieu type that are switched on/off

    Nonlinear dynamics of a spinning shaft with non-constant rotating speed

    Get PDF
    Research on spinning shafts is mostly restricted to cases of constant rotating speed without examining the dynamics during their spin-up or spin-down operation. In this article, initially the equations of motion for a spinning shaft with non-constant speed are derived, then the system is discretised, and finally a nonlinear dynamic analysis is performed using multiple scales perturbation method. The system in first-order approximation takes the form of two coupled sets of paired equations. The first pair describes the torsional and the rigid body rotation, whilst the second consists of the equations describing the two lateral bending motions. Notably, equations of the lateral bending motions of first-order approximation coincide with the system in case of constant rotating speed, and considering the amplitude modulation equations, as it is shown, there are detuning frequencies from the Campbell diagram. The nonlinear normal modes of the system have been determined analytically up to the second-order approximation. The comparison of the analytical solutions with direct numerical simulations shows good agreement up to the validity of the performed analysis. Finally, it is shown that the Campbell diagram in the case of spin-up or spin-down operation cannot describe the critical situations of the shaft. This work paves the way, for new safe operational ‘modes’ of rotating structures bypassing critical situations, and also it is essential to identify the validity of the tools for defining critical situations in rotating structures with non-constant rotating speeds, which can be applied not only in spinning shafts but in all rotating structures

    Association of Tannins and Related Polyphenols with the Cyclic Peptide Gramicidin S

    Get PDF
    The association of 10 different tannins and related polyphenols with gramicidin S, a cyclic peptide having a rigid β-turn structure, has been examined using 1H-NMR spectroscopy. In the presence of pentagalloylglucose and epigallocatechin-3-O-gallate, the proton signals due to proline and the adjacent phenylalanine moieties selectively shifted to up field, suggesting a regioselective association with the β-turn structure. The association was also supported by the observation of intermolecular nuclear Overhauser effects between epigallocatechin-3-O-gallate and the peptide. In contrast, ellagitannins, biogenetically derived from pentagalloylglucose, showed small and non-selective chemical shift changes, suggesting that interaction with these tannins is relatively weak. The hydrophobicity of the tannin molecules and the steric hindrance of the interaction site are thought to be important in the association

    <Poster Presentation 5>Chaos in mechanical systems. Selected Problems

    Get PDF
    [Date] November 28 (Mon) - December 2 (Fri), 2011: [Place] Kyoto University Clock Tower Centennial Hall, Kyoto, JAPA

    Autoparametric vibrations of a nonlinear system with pendulum

    No full text
    Vibrations of a nonlinear oscillator with an attached pendulum, excited by movement of its point of suspension, have been analysed in the paper. The derived differential equations of motion show that the system is strongly nonlinear and the motions of both subsystems, the pendulum and the oscillator, are strongly coupled by inertial terms, leading to the so-called autoparametric vibrations. It has been found that the motion of the oscillator, forced by an external harmonic force, has been dynamically eliminated by the pendulum oscillations. Influence of a nonlinear spring on the vibration absorption near the main parametric resonance region has been carried out analytically, whereas the transition from regular to chaotic vibrations has been presented by using numerical methods. A transmission force on the foundation for regular and chaotic vibrations is presented as well

    Vibration of a mistuned three-bladed rotor under regular and chaotic excitations

    No full text
    This study considers forced vibrations of a rotating structure consisting of a rigid hub and three flexible beams. The blades are nominally made of a multilayered laminate with a specific stacking sequence resulting in full isotropic macroscopic material behaviour. However, in the performed analysis it is assumed that the rotor has been mistuned because of manufacturing tolerances of the composite material. These inaccuracies are represented by deviations of reinforcing fibres orientations from their nominal values. The considered tolerances break the intended macroscopic material isotropy and make the laminate to exhibit the fully orthotropic behaviour. Based on previous authors research, the system of four mutually coupled dimensionless ordinary differential governing equations is adopted. Forced responses of the system under regular and chaotic excitations are investigated
    corecore