503 research outputs found

    Miss Those Men

    Get PDF

    Longitudinal Losses Due to Breathing Mode Excitation in Radiofrequency Linear Accelerators

    Full text link
    Transverse breathing mode oscillations in a particle beam can couple energy into longitudinal oscillations in a bunch of finite length and cause significant losses. We develop a model that illustrates this effect and explore the dependence on mismatch size, space-charge tune depression, longitudinal focusing strength, bunch length, and RF bucket length

    Temporal Model of an Optically Pumped Co-Doped Solid State Laser

    Get PDF
    Currently, research is being conducted on the optical properties of materials associated with the development of solid-state lasers in the 2 micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are obtained. Finally, we report on our numerical analysis of the system and how it compares with experimental results

    Temporal model of an optically pumped co-doped solid state laser

    Get PDF
    Currently, research is being conducted on the optical properties of materials associated with the development of solid state lasers in the two micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are attained. Finally, we report on our numerical analysis of the system and how it compares with experimental results

    Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    Get PDF
    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package

    Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    Get PDF
    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K. R. Samokhvalova, J. Zhou and C. Chen Phys. Plasmas 14 103102 (2007); J. Zhou, K. R. Samokhvalova and C. Chen Phys. Plasmas 15 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam is found be stable in the parameter regime where the simulations are performed.United States. Dept. of Energy (Grant DEFG02- 95ER40919)United States. Dept. of Energy (Grant DE-FG02-05ER54836

    Diffractive beamshaping elements at the fabrication limit

    Get PDF
    We treat the generation of flat-top intensity distributions, as required for laser applications at short wavelengths. To obtain high fill factors and almost arbitrary shapes, arrays of diffractive Fresnel zone plates at the fabrication limit are investigated. The angular power spectrum noise due to the binarization of the transmission phase function is smoothed using an incoherent source. The remaining zeroth order is ommited by the addition of a constant offset phase to the transmission phase function of the array. An analysis of etch-depth errors as well as an investigation of multilevel elements is appended. Simulation results, obtained by a 2-D analysis for radial symmetry, are compared to measurements. © 1996 Society of Photo-Optical Instrumentation Engineers
    • …
    corecore