6,372 research outputs found

    The potential for astrometry in the infrared

    Get PDF
    Infrared interferometry promises to be a useful astrometric technique. Preliminary measurements of the star alpha Orionis made with a heterodyne interferometer exhibit phase coherence over a period of at least 1000 seconds. The measurements were equivalent to a positional determination of 60 milliarcsecond accuracy every 5 seconds of integration

    PILOT: design and capabilities

    Full text link
    The proposed design for PILOT is a general-purpose, wide-field 1 degree 2.4m, f/10 Ritchey-Chretien telescope, with fast tip-tilt guiding, for use 0.5-25 microns. The design allows both wide-field and diffraction-limited use at these wavelengths. The expected overall image quality, including median seeing, is 0.28-0.3" FWHM from 0.8-2.4 microns. Point source sensitivities are estimated.Comment: 4 pages, Proceedings of 2nd ARENA conference 'The Astrophysical Science Cases at Dome C', Potsdam, 17-21 September 200

    Mocassin: A fully three-dimensional Monte Carlo photoionization code

    Get PDF
    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitraries geometry and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of tretating on or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this paper. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot et al., 1986; Ferland et al., 1995; Pequignot et al., 2001)\citep{pequignot86,ferland95, pequignot01}. The results obtained for the benchmark cases are satisfactory and are presented in this paper. A performance analysis has also been carried out and is discussed here.Comment: 17 pages, 4 figures, 1 appendix Changes: appendix adde

    Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Get PDF
    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\sc i} and He {\sc i} recombination spectrum yields an electron temperature of 900\sim 900 K, a factor of ten lower than given by the collisionally excited [O {\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\sc ii} λ\lambda4089/λ\lambda4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\sc ii} ORLs arise from ionized regions with an electron temperature of only 630\sim 630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.Comment: 12 pages, 5 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Characterization of soil and postlaunch pad debris from Cape Canaveral launch complex and analysis of soil interaction with aqueous HCl

    Get PDF
    Soil samples were fractionated and analyzed in order to assess the physical and chemical interactions of entrained soil with solid-rocket exhaust clouds. The sandy soil consisted primarily of quartz (silica) particles, 30 to 500 microns in diameter, and also contained seashell fragments. Differential and cumulative soil-mass size distributions are presented along with mineralogy, elemental compositions, and solution pH histories. About 90 percent of the soil mass consisted of particles 165 microns in diameter. Characteristic reaction times in aqueous HC1 slurries varied from a few minutes to several days, and capacities for reaction under acidic conditions varied from 10 to 40 g HCl/kg soil, depending on particle size. Airborne lifetimes of particles 165 microns are conservatively 30 min, and this major grouping is predicted to represent a small short-term chemical sink for up to 5% of the total HC1. The smaller and more minor fractions, below a 165 micron diameter, may act as giant cloud condensation nuclei over much longer airborne lifetimes. Finally, the demonstrated time dependency of neutralization is a complicating factor; it can influence the ability to deduce in-cloud HCl scavenging with reaction and can affect the accuracy of measured chemical compositions of near-field wet deposition
    corecore