10,627 research outputs found

    Data compression for the Cassini radio and plasma wave instrument

    Get PDF
    The Cassini Radio and Plasma Wave Science experiment will employ data compression to make effective use of the available data telemetry bandwidth. Some compression will be achieved by use of a lossless data compression chip and some by software in a dedicated 80C85 processor. A description of the instrument and data compression system are included in this report. Also, the selection of data compression systems and acceptability of data degradation is addressed

    Combining capacitor/inductor and idling asynchronous motor in design of a system for balance of a large two-phase industrial load over three phases

    Get PDF
    This paper describes the design and implementation of a new solution to power quality problems associated with large unbalanced nonlinear loads at fine glass furnace production utilities. Such furnaces use two-phase electricity for reasons of enhanced temperature control and in order to maintain consistency of glass viscosity. A significant risk of power failure is introduced due to this requirement. The furnace load is also nonlinear in nature, due to temperature control by electronic power switching. This gives rise to risks associated with high harmonic distortion. A new method in design of filters to alleviate problems associated with this type of load is also described

    First-Order Vortex Lattice Melting and Magnetization of YBa2_2Cu3_3O$_{7-\delta}

    Full text link
    We present the first non-mean-field calculation of the magnetization M(T)M(T) of YBa2_2Cu3_3O7δ_{7-\delta} both above and below the flux-lattice melting temperature Tm(H)T_m(H). The results are in good agreement with experiment as a function of transverse applied field HH. The effects of fluctuations in both order parameter ψ(r)\psi({\bf r}) and magnetic induction BB are included in the Ginzburg-Landau free energy functional: ψ(r)\psi({\bf r}) fluctuates within the lowest Landau level in each layer, while BB fluctuates uniformly according to the appropriate Boltzmann factor. The second derivative (2M/T2)H(\partial^2 M/\partial T^2)_H is predicted to be negative throughout the vortex liquid state and positive in the solid state. The discontinuities in entropy and magnetization at melting are calculated to be 0.034kB\sim 0.034\, k_B per flux line per layer and 0.0014\sim 0.0014~emu~cm3^{-3} at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil

    Ringing After a High-Energy Collision: Ambipolar Oscillations During Impact Plasma Expansion

    Get PDF
    High-velocity impacts on the Moon and other airless bodies deliver energy and material to the lunar surface and exosphere. The target and i mpactor material may become vaporized and ionized to form a collision al plasma that expands outward and eventually becomes collisionless. In the present work, kinetic simulations of the later collision less stage of impact plasma expansion are performed. Attention is paid to characterizing "ambipolar oscillations" in which thermodynamic distur bances propagate outward to generate "ringing" within the expanding e lectron cloud, which could radiate an electromagnetic signature of lo cal plasma conditions. The process is not unlike a beam-plasma intera ction, with the perturbing electron population in the present case ac ting as a highly thermal "beam" that resonates along the expanding de nsity gradient. Understanding the electromagnetic aspects of impact p lasma expansion could provide insight into the lasting effects of nat ural, impact-generated currents on airless surfaces and charging haza rds to human exploration infrastructure and instrumentation

    Charging and Subsequent Dissipation of a Rover Wheel in the Lunar Polar Regions

    Get PDF
    As a roving vehicle moves along the lunar surface, electric charge will build up through tribo-charging. This charge collected by the roving object will have a dissipative path to either the surface or the ambient plasma, depending upon which path is most conductive. At the lunar terminator region and into nightside regions, the surface is very cold and becomes a very poor conductor. leaving the plasma as the dominant remediating current for dissipation. However, within lunar craters, even plasma currents become substantially reduced which then greatly increases electric 'dissipation times, This work will involve the advancement of the stepping astronaut charge model, by considering the charging and plasma dissipation of a rolling rover wheel, The objective of this work is to determine the nature of charging and discharging for a rover wheel as it rolls along the cold, plasma-starved lunar polar regions. The rotating wheel accumulates charge via contact electrification (tribo-charging) with the lunar regolith. This tribo-charging is dependent on the composition of the objects in contact, with insulators and conductors charging differently. Given the environmental plasma in the region, we then determine the dissipation time for the wheel to bleed off its excess charge into the surrounding plasma. A model of the rover wheel rotating continuously over a surface regolith within a polar crater has been applied. The environmental plasma has been described previously. We define a new tribo-charging term specifically for the rotating system, with charge levels defined as a function of the wheel size, area in contact with the regolith, regolith particle size distribution, as well as the velocity at which the wheel is turning. We recognize that as charged dust accumulates and sticks to the wheel, this behaves effectively as a new current. Hence, the overall charging of the system should no longer vary linearly. and begin to show signs of saturation, We are devising a dust current term to model this charge-limiting effect, and will present the results in discussion

    Lunar Ion Transport Near Magnetic Anomalies: Possible Implications for Swirl Formation

    Get PDF
    The bright swirling features on the lunar surface in areas around the Moon but most prominently at Reiner Gamma, have intrigued scientists for many years. After Apollo and later Lunar Prospector (LP} mapped the Lunar magnetic fields from orbit, it was observed that these features are generally associated with crustal magnetic anomalies. This led researchers to propose a number of explanations for the swirls that invoke these fields. Prominent among these include magnetic shielding in the form of a mini-magnetosphere which impedes space weathering by the solar wind, magnetically controlled dust transport, and cometary or asteroidal impacts that would result in shock magnetization with concomitant formation ofthe swirls. In this presentation, we will consider another possibility, that the ambient magnetic and electric fields can transport and channel secondary ions produced by micrometeorite or solar wind ion impacts. In this scenario, ions that are created in these impacts are under the influence of these fields and can drift for significant distances before encountering the magnetic anomalies when their trajectories are disrupted and concentrated onto nearby areas. These ions may then be responsible for chemical alteration of the surface leading either to a brightening effect or a disruption of space weathering processes. To test this hypothesis we have run ion trajectory simulations that show ions from regions about the magnetic anomalies can be channeled into very small areas near the anomalies and although questions remain as to nature of the mechanisms that could lead to brightening of the surface it appears that the channeling effect is consistent with the existence of the swirls

    Anisotropy of permeability in faulted porous sandstones

    Get PDF
    Thank you to Total E & P UK for funding the project, and especially Chris Wibberley, Claude Gout and Stephane Vignau for input. The author would also like to thank Zoe Shipton and Graham Yielding for their constructive reviews of the manuscript. Thanks also to Manuel Prieto for sharing his MSc pilot study written at the University of Aberdeen, Professor Martin Lee and Peter Chung at the University of Glasgow for SEM use and lastly thank you to Gavin Tennent for access to the Clashach Quarry and for samples.Peer reviewedPublisher PD
    corecore