92 research outputs found

    Effect of Native Defects on Optical Properties of InxGa1-xN Alloys

    Full text link
    The energy position of the optical absorption edge and the free carrier populations in InxGa1-xN ternary alloys can be controlled using high energy 4He+ irradiation. The blue shift of the absorption edge after irradiation in In-rich material (x > 0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical absorption measurements show that the irradiation-introduced native defects are inside the bandgap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model

    A nanoporous capacitive electrochemical ratchet for continuous ion separations

    Full text link
    Directed ion transport in liquid electrolyte solutions underlies numerous phenomena in nature and industry including neuronal signaling, photosynthesis and respiration, electrodialysis for desalination, and recovery of critical materials. Here, we report the first demonstration of an ion pump that drives ions in aqueous electrolytes against a force using a capacitive ratchet mechanism. Our ratchet-based ion pumps utilize the non-linear capacitive nature of electric double layers for symmetry breaking which drives a net time-averaged ion flux in response to a time varying input signal. Since the devices are driven by a non-linear charging and discharging of double layers, they do not require redox reactions for continual operation. Ratchet-based ion pumps were fabricated by depositing thin gold layers on the two surfaces of anodized alumina wafers, forming nanoporous capacitor-like structures. Pumping occurs when a wafer is placed between two compartments of aqueous electrolyte and the electric potential across it is modulated. In response to various input signals, persistent ionic voltages and sustained currents were observed, consistent with net unidirectional ion transport, even though conduction through the membrane was non-rectifying. The generated ionic power was used in conjunction with an additional shunt pathway to demonstrate electrolyte demixing

    Band offset determination of the GaAs/GaAsN interface using the DFT method

    Full text link
    The GaAs/GaAsN interface band offset is calculated from first principles. The electrostatic potential at the core regions of the atoms is used to estimate the interface potential and align the band structures obtained from respective bulk calculations. First, it is shown that the present method performs well on the well-known conventional/conventional AlAs/GaAs (001) superlattice system. Then the method is applied to a more challenging nonconventional/conventional GaAsN/GaAs (001) system, and consequently type I band lineup and valence-band offset of about 35 meV is obtained for nitrogen concentration of about 3 %, in agreement with the recent experiments. We also investigate the effect of strain on the band lineup. For the GaAsN layer longitudinally strained to the GaAs lattice constant, the type II lineup with a nearly vanishing band offset is found, suggesting that the anisotropic strain along the interface is the principal cause for the often observed type I lineup

    A Schottky top-gated two-dimensional electron system in a nuclear spin free Si/SiGe heterostructure

    Full text link
    We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using 28Si and 70Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-free materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm2/Vs at a sheet carrier density of 4.6E11 cm-2 at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with palladium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment.Comment: 8 pages, 3 figure
    corecore