125 research outputs found

    Norovirus Infection and Disease in an Ecuadorian Birth Cohort: Association of Certain Norovirus Genotypes With Host FUT2 Secretor Status.

    Get PDF
    BACKGROUND: Although norovirus is the most common cause of gastroenteritis, there are few data on the community incidence of infection/disease or the patterns of acquired immunity or innate resistance to norovirus. METHODS: We followed a community-based birth cohort of 194 children in Ecuador with the aim to estimate (1) the incidence of norovirus gastroenteritis from birth to age 3 years, (2) the protective effect of norovirus infection against subsequent infection/disease, and (3) the association of infection and disease with FUT2 secretor status. RESULTS: Over the 3-year period, we detected a mean of 2.26 diarrheal episodes per child (range, 0-12 episodes). Norovirus was detected in 260 samples (18%) but was not found more frequently in diarrheal samples (79 of 438 [18%]), compared with diarrhea-free samples (181 of 1016 [18%]; P = .919). A total of 66% of children had at least 1 norovirus infection during the first 3 years of life, and 40% of children had 2 infections. Previous norovirus infections were not associated with the risk of subsequent infection. All genogroup II, genotype 4 (GII.4) infections were among secretor-positive children (P < .001), but higher rates of non-GII.4 infections were found in secretor-negative children (relative risk, 0.56; P = .029). CONCLUSIONS: GII.4 infections were uniquely detected in secretor-positive children, while non-GII.4 infections were more often found in secretor-negative children

    Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence

    Get PDF
    The control of re-occurring pandemic pathogens requires understanding the origins of new pandemic variants and the factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have hypothesized that new GII.4 pandemic viruses arise when previously circulating pandemic or pre-pandemic variants undergo substitutions in antigenic regions that enable evasion of host population immunity, as described by conventional models of antigenic drift. In contrast, we show here that the acquisition of new genetic and antigenic characteristics cannot be the proximal driver of new pandemics. Pandemic GII.4 viruses diversify and spread over wide geographical areas over several years prior to simultaneous pandemic emergence of multiple lineages, indicating that the necessary sequence changes must have occurred before diversification, years prior to pandemic emergence. We confirm this result through serological assays of reconstructed ancestral virus capsids, demonstrating that by 2003, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics

    Virus–Host Interactions Between Nonsecretors and Human Norovirus

    Get PDF
    BACKGROUND & AIMS: Human norovirus infection is the leading cause of acute gastroenteritis. Genetic polymorphisms, mediated by the FUT2 gene (secretor enzyme), define strain susceptibility. Secretors express a diverse set of fucosylated histoblood group antigen carbohydrates (HBGA) on mucosal cells; nonsecretors (FUT2-/-) express a limited array of HBGAs. Thus, nonsecretors have less diverse norovirus strain infections, including resistance to the epidemiologically dominant GII.4 strains. Because future human norovirus vaccines will comprise GII.4 antigen and because secretor phenotype impacts GII.4 infection and immunity, nonsecretors may mimic young children immunologically in response to GII.4 vaccination, providing a needed model to study crossprotection in the context of limited pre-exposure. METHODS: By using specimens collected from the first characterized nonsecretor cohort naturally infected with GII.2 human norovirus, we evaluated the breadth of serologic immunity by surrogate neutralization assays, and cellular activation and cytokine production by flow cytometry. RESULTS: GII.2 infection resulted in broad antibody and cellular immunity activation that persisted for at least 30 days for T cells, monocytes, and dendritic cells, and for 180 days for blocking antibody. Multiple cellular lineages expressing interferon-g and tumor necrosis factor-a dominated the response. Both T-cell and B-cell responses were cross-reactive with other GII strains, but not GI strains. To promote entry mechanisms, inclusion of bile acids was essential for GII.2 binding to nonsecretor HBGAs. CONCLUSIONS: These data support development of withingenogroup, cross-reactive antibody and T-cell immunity, key outcomes that may provide the foundation for eliciting broad immune responses after GII.4 vaccination in individuals with limited GII.4 immunity, including young children

    Near-Complete Genome Sequences of Several New Norovirus Genogroup II Genotypes.

    Get PDF
    We report here the near-complete genome sequences of 13 norovirus strains detected in stool samples from patients with acute gastroenteritis from Bangladesh, Ecuador, Guatemala, Peru, Nicaragua, and the United States that are classified into one existing (genotype II.22 [GII.22]), 3 novel (GII.23, GII.24 and GII.25), and 3 tentative novel (GII.NA1, GII.NA2, and GII.NA3) genotypes

    Viral Gastroenteritis Associated with Genogroup II Norovirus among U.S. Military Personnel in Turkey, 2009

    Get PDF
    The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks

    Emergence of a novel GII.17 norovirus – end of the GII.4 era?

    Get PDF
    In the winter of 2014/15 a novel GII.P17-GII.17 norovirus strain (GII.17 Kawasaki 2014) emerged, as a major cause of gastroenteritis outbreaks in China and Japan. Since their emergence these novel GII.P17-GII.17 viruses have replaced the previously dominant GII.4 genotype Sydney 2012 variant in some areas in Asia but were only detected in a limited number of cases on other continents. This perspective provides an overview of the available information on GII.17 viruses in order to gain insight in the viral and host characteristics of this norovirus genotype. We further discuss the emergence of this novel GII.P17-GII.17 norovirus in context of current knowledge on the epidemiology of noroviruses. It remains to be seen if the currently dominant norovirus strain GII.4 Sydney 2012 will be replaced in other parts of the world. Nevertheless, the public health community and surveillance systems need to be prepared in case of a potential increase of norovirus activity in the next seasons caused by this novel GII.P17-GII.17 norovirus

    Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua

    Get PDF
    Noroviruses are associated with one fifth of diarrheal illnesses globally and are not yet preventable with vaccines. Little is known about the effects of norovirus infection on infant gut microbiome health, which has a demonstrated role in protecting hosts from pathogens and a possible role in oral vaccine performance. In this study, we characterized infant gut microbiome changes occurring with norovirus-associated acute gastroenteritis (AGE) and the extent of recovery. Metage-nomic sequencing was performed on the stools of five infants participating in a longitudinal birth cohort study conducted in León, Nicaragua. Taxonomic and functional diversities of gut micro-biomes were profiled at time points before, during, and after norovirus infection. Initially, the gut microbiomes resembled those of breastfeeding infants, rich in probiotic species. When disturbed by AGE, Gammaproteobacteria dominated, particularly Pseudomonas species. Alpha diversity in-creased but the genes involved in carbohydrate metabolism and glycan biosynthesis decreased. After the symptoms subsided, the gut microbiomes rebounded with their taxonomic and functional communities resembling those of the pre-infection microbiomes. In this study, during disruptive norovirus-associated AGE, the gut microbiome was temporarily altered, returning to a pre-infection composition a median of 58 days later. Our study provides new insights for developing probiotic treatments and furthering our understanding of the role that episodes of AGE have in shaping the infant gut microbiome, their long-term outcomes, and implications for oral vaccine effectiveness
    • …
    corecore